博碩士論文 993202006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:230 、訪客IP:18.226.170.68
姓名 林峙良(Chih-Liang Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 人工蜂群演算法使用隨機搜尋與隨機鄰點搜尋機制之比較與應用
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 以整合力法為分析工具之結構離散輕量化設計效率的探討★ 最佳化設計於結構被動控制之應用
★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究★ 構件考慮剛域之向量式有限元素分析研究
★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究★ 橋梁多支承輸入近斷層強地動極限破壞分析
★ 穩健設計於結構被動控制之應用★ 二維結構與固體動力分析程式之視窗介面的開發
★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應
★ 九二一地震大里奇蹟社區倒塌原因之探討★ 群樁基礎之最低價設計
★ 應用遺傳演算法於群樁基礎低價化設計★ 應用Discrete Lagrangian Method於群樁基礎低價化設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要是針對連續變數、離散變數、混合變數之最佳化設計問題,提出一種結合人工蜂群演算法(Artificial Bee Algorithm, ABC)與隨機鄰點演算法(Stochastic Neighborhood Search Algorithm, SN)的混合搜尋演算法,即 ABC_SN。 ABC 為一隨機搜尋法,與粒子群演算法模擬鳥群智能行為相似,藉由蜜蜂的智能行為發展出來的演算法,具有全域搜尋的能力,其概念簡單且不需調整過多參數。SN 是由差分進化演算法概念衍伸出來的一個隨機搜尋法。過去研究結果顯示,ABC 過度廣域的搜索造成了搜索精準度不高,且容易陷入局部最佳解,為了改善 ABC 的搜索精準度不高與容易陷入局部最佳解的這兩個問題,因此本文使用 SN 針對 ABC 的問題加以改善,將 ABC 與 SN 整合後期望增加其搜索精度與脫離局部最佳解。
  在將 ABC 與 SN 整合方式中,本文共使用了兩種形式,藉由數個結構輕量化設計問題、含束制條件數學式問題與無束制條件數學式問題將分別用來探討其適用性和影響求解品質與效率的相關參數。
  比較結果發現其中一種方式是將 ABC 的工蜂與觀察蜂階段中,隨機方式產生食物源更改為隨機鄰點方式來產生,其整體來看求解品質較佳。而只將 ABC 的觀察蜂階段中,隨機方式產生食物源更改為隨機鄰點方式來產生的話,則是強健性略優。
相較於兩種方式設計結果之比較,本文再將求解品質較佳的方式,稍作修改,因而在增加兩種分析形式並觀察是否能更進一步增加其強健性。
摘要(英) Previous studies showed that ABC have low accuracy and poor search in local space. In order to improve the drawback of ABC, this article raised a hybrid heuristic searching algorithms that combine with ABC (Artificial Bee Colony Algorithm) with SN (Stochastic Neighborhood Search Algorithm). These hybrid heuristic searching algorithms are devoted to problem solve for optimization problems with discrete, continuous and mixed variables. ABC is a random search method, and was developed by simulating the intelligent behavior of the honey bee. SN is a random neighborhood search method, it was modified from the differential evolution algorithm.
For integration of ABC algorithm and SN algorithm, this article were used in two forms. This two forms will used to solve optimum design problem and discuss the applicability and the solution quality and efficiency, those problem include non-constrains mathematical problem 、constrains mathematical problem and structural problem.
We can found that one of the model which is modify in employed bee phase and onlooker phase has better solution quality. And the other one which is modify in onlooker phase is slightly stronger.
For increase stronger of the model which have better solution quality, this article will addition the other two analytical forms.
關鍵字(中) ★ 人工蜂群演算法
★ 隨機鄰點搜尋法
★ 混合搜尋演算法
★ 結構輕量化設計問題
★ 含束制條件數學式問題
★ 無束制條件數學式問題
關鍵字(英) ★ Artificial bee colony algorithm
★ Stochastic Neighborhood Search Algorithm
★ Stochastic Neighborhood Search Algorithm
★ optimum structural design
★ non-constrains mathematical problem
★ constrains mathematical problem
論文目次 目錄
中文摘要.................................................i
Abstract..............................................iii
目錄....................................................v
表目錄..................................................xi
圖目錄..................................................xv
第一章 緒論............................................1
1.1 研究動機與目的....................................1
1.2 文獻回顧.........................................3
1.2.1 遺傳演算法(Genetic Algorithms Algorithm, GA).....3
1.2.2 模擬退火法(Simulated Annealing Algorithm, SA)....5
1.2.3 粒子群演算法(Particle Swarm Optimization Algorithm, PSO)............................6
1.2.4 人工蜂群演算法(Artificial Bee Colony Algorithm, ABC)............................8
1.2.5 差分進化演算法(Differential Evolution Algorithm, DE).............................9
1.2.6 隨機鄰點演算法(Stochastic Neighborhood Search Algorithm, SN)................. 11
1.3 研究方法與內容............11
第二章 ABC與SN演算法............13
2.1 最佳化問題之數學模式.......13
2.2 適應函數.................14
2.3 人工蜂群演算法............16
2.3.1 引言.....................16
2.3.2 人工蜂群演算法的基本模式....16
2.3.3 ABC 的數學模式............19
2.3.4 ABC 搜尋程序與流程圖.......22
2.4 隨機鄰點演算法............25
第三章 ABC_SN 混合式演算法.......26
3.1 引言....................26
3.2 ABC_SN 混合搜尋法........26
3.2.1 ABC_SN_O................27
3.2.2 ABC_SN_EO...............28
3.2.3 ABC_SN_EO_1.............30
3.2.4 ABC_SN_EO_2.............33
3.3 ABC_SN_EO之參數研究.......34
3.3.1 Sphere function.........35
3.3.2 10桿平面桁架..............36
3.3.3 25桿空間桁架..............39
3.3.4 小結.....................42
第四章 數值算例..................43
4.1 數值算例簡介..............43
4.2 無束制條件數學式算例........46
4.2.1 Sphere function.........47
4.2.2 Schaffer function.......48
4.2.3 Griewank function.......49
4.2.4 Rastrigin function......50
4.2.4 小結.....................51
4.3 含束制條件之結構設計及數學式算例....51
4.3.1 Pressure vessel design....52
4.3.2 Constrained Function I....55
4.3.3 Constrained Function II...57
4.3.4 Constrained Function III..59
4.3.5 Constrained Function IV...61
4.3.6 小結.......................63
4.4 結構輕量化設計算例...........63
4.4.1 10桿平面桁架................65
4.4.2 22桿平面桁架................70
4.4.3 25桿空間桁架................76
4.4.4 72桿空間桁架................81
4.4.5 132桿穹頂桁架...............86
4.4.6 160桿空間桁架...............91
4.4.7 雙跨五層平面構架............102
4.4.9 小結......................107
4.5 所有算例之設計結果評等.......107
4.5.1 最佳解.....................109
4.5.2 最佳解平均值................111
4.5.3 變異係數...................114
4.5.4 達到最佳解的平均適應值或結構分析計算次數...116
4.5.5 小結.......................119
第五章 結論與建議.................121
5.1 結論與建議.................121
5.2 未來研究方向................122
參考文獻...........................124
附錄A 10桿平面桁架細部資料及設計結果.....132
A.1 細部設計資料......132
A.2 ABC_SN設計結果...133
附錄B 22桿平面桁架細部資料及設計結果.....134
B.1 細部設計資料......134
B.2 ABC_SN設計結果...136
附錄C 25桿空間桁架細部資料及設計結果.....138
C.1 細部設計資料......138
C.2 ABC_SN設計結果...139
附錄D 72桿空間桁架細部資料及設計結果.....141
D.1 細部設計資料......141
D.2 ABC_SN 設計結果...143
附錄E 132桿穹頂桁架細部資料及設計結果.....146
E.1 細部設計資料......146
E.2  ABC_SN 設計結果...149
附錄F 160桿空間桁架細部資料及設計結果.....158
F.1 細部設計資料......158
F.2 ABC_SN 設計結果...163
附錄G 雙跨五層平面構架細部資料及設計結果.....174
G.1 細部設計資料......174
G.2 ABC_SN 設計結果...176
附錄H 單跨八層平面構架細部資料及設計結果.....179
H.1 細部設計資料......179
H.2 ABC_SN設計結果...186
參考文獻 1.Aarts, E. H. L., and Korst, J. H. M., (1989) “Simulated Annealing and Boltzmann Machines,” A Stochastic Approach to Combinatorial Optimization and Neural Computing“John Wiley & Sons, New York.
2.Angeline, P. J., (1998) “Using Selection to Improve Particle Swarm Optimization,” Evolutionary Computation Proceedings, pp. 84−89.
3.Bremicker, M., Papalambros, P. Y., and Loh, H. T., (1990) “Solution of Mixed-Discrete Structural Optimization Problems with a New Sequential Linearization Algorithm,” Computers and Structures,Vol. 37, No. 4, pp. 451-461.
4.Coello, C. A., Rudnick, M., and Christiansen, A. D., (1994) “Using Genetic Algorithms for Optimal Design of Trusses,” Sixth International Conference on Tools with Artifical Intelligence, IEEE, pp. 88−94
5.Cai, J., and Thierauf, G.,(1996) “A Parallel Evolution Strategy for Solving Discrete Structural Optimization,” Advances in parallel and vector processing for structural mechanics, Vol. 27, No. 12, pp. 91−96
6.Chai, S., and Sun, H. C., (1996) “A Relative Difference Quotient Algorithm for Discrete Optimization,” Structural and Multidisciplinary Optimization, Vol. 12, No. 1, pp. 46−56
7.Camp, C., Pezeshk, S., and Cao, G., (1998) “Optimized Design of TwoDimensional Structures Using a Genetic Algorithm,” Journal of Structural Engineering, ASCE, Vol. 124, No. 5, pp. 551−559
8.Coello, C. A., (2000) “Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems,” COMPUTERS IN IMDUSTRY, Vol. 41(2), pp. 113−127
9.Coello, C. A., (2002) “Theoretial and Numerical Constraint-Handing Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 12, pp. 1245−1287
10.De Jong, K. A., (1975) “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,” Dissertation Abstracts International, Vol. 36, No. 10, 5140B.(University Microfilms No. 76−9381)
11.Davis, J. S., (1991) “Handbook of Genetic Algorithms,”Van Nostrand Reinhold.
12.Deb, K., Gulati, S., and Chakrabarti, S., (1998) “Optimal Truss-Structure Design Using Real-Coded Genetic Algoritms,” Proceedings of the Third Annual Conference, pp. 479−486.
13.Deb, K., (2000) “An Efficient Constraint Handling Method for Genetic Algorithms,” Computer Methods in Applied Mechanics and Engineering, Vol. 186, No. 2−4, pp. 311−338
14.Eberhart, R. C., and Kennedy, J., (1995) “A New Optimizer Using Particle Swarm Theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39−43
15.Erbatur, F., Hasancebi, O., Tutuncu, I., and Kilic, H., (2000) “Optimal Design of Planar and Space Structures with Genetic Algorithms,” Computers and Structures, Vol. 75, No. 2, pp. 209−224
16.Goldberg, D. E., (1989) “ Genetic Algorithms in Search, Optimization, and Machine Learning,” Machine Learning, Vol. 75, No. 2−3, pp. 95−99
17.Groenwold, A. A., Stander, N., and Snyman, J. A.,(1999) “A Regional Genetic Algorithms for the Discrete Optimal Design of Truss Structures,” International Journal for Numerical Methods in Engineering, Vol. 44, No.6, pp. 749−766
18.Holland, J. H., (1962) “Outline for a Logical Theory of Adaptive System,” Journal of the Association for Computing Machinery, Vol. 3, No. 3,pp. 297−314
19.Homaifar, A., Lai, S. H.-V., and Qi, X., (1994) “Constrained Optimization Via Genetic Algorithms,” Simulation, Vol. 62, No. 4, pp. 242−253
20.Hsu, Y. L., Sun, T. L., and Leu, L. H., (1995) “A TWO-STAGE SEQUENTIAL APPROXIMATION METHOD FOR NON-LINEAR DISCRETE - VARIABLE OPTIMIZATION,”.
21.Hu, X., and Eberhart, R. C., (2002) “Adaptive Particle Swarm Optimization: Detection and Response to Dynamic System,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 2, No. 1, pp. 1666−1670
22.Kaneko, L., Lawo M., and Thierauf G., (1982) “On Computational Procedures for the Force Method,” International Journal of Numerical Method in Engineering, Vol. 18, No. 10, pp.1469−1495
23.Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., (1983) “Optimization by Simulated Annealing,” The Statistician, Vol. 220, No. 4598, pp.671−680
24.Kennedy, J., and Eberhart, R. C., (1995) “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks, Vol. 4, pp. 1942−1948
25.Krink, T., Vesterstorm J. S., and Riget, J., (2002) “Particle Swarm Optimization with Spatial Particle Extension,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 2, pp. 1474−1497
26.Karaboga, D . (2005) “An idea based on honey bee swarm for numerical optimization,” Technical Report-TR06, Engineering Faculty, Computer Enginnering Department.
27.Karaboga, D., and Basturk, B., (2007a) “On the performance of artificial bee colony (ABC) algorithm,“Applied Soft Computing ,Vol.8, No. 1, pp.687–697
28.Karaboga, D. and Basturk, B., (2007b) “Artificial Bee Colony(ABC) Optimization Algorithm for Solving Constrained Optimization Problems,” Foundations of Fuzzy Logic and Soft Computing, vol 4529 , pp. 789−798
29.Karaboga, D., and Akay, B., (2009) “A comparative study of Artificial Bee Colony algorithm,”Applied Mathematics and Computation, Vol. 214,No. 1, pp. 108−132
30.Karaboga, D. and Akay, B., (2010) “A Modified Artificial Bee Colony(ABC) Algorithm for Constrained Optimization Problems,”Applied Soft Computing ,Vol. 11, No. 3,pp. 3021−3031
31.Lim, O. K., and Arora, J. S., (1986) “An Active Set RQP-Algorithm for Engineering Design Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 57, pp. 51−65.
32.Lucic, P., and Teodorovic, D., (2001) “Bee system: Modeling Combinatorial Optimization Transportation Engineering Problems by Swarm Intelligence,” In: Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao Miguel, Azores Islands, Portugal, pp. 441−445
33.Lee, K. S., and Geem, Z. W., (2004) “A New Meta-Heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice,” Computer Methods in Applied Mechanics and Engineerin., Vol. 194, No. 36−38, pp. 3902−3933
34.Pedersen, P., (1973) “Optimal Joint Positions for Space Trusses,” Journal of the Structural Division, ASCE, Vol. 99, No. 12, pp. 2459-2475.
35.Parkinson, A., and Wilson, M., (1989) “Development of a Hybrid SQP-GRG Algorithm for Constrained Nonlinear Programming,” Journal of Mechanisms and Automation in Design, Vol. 110, No. 1, pp. 73–83.
36.Price, K., and Storn, R., (1995) “Minimizing the real functions of the ICEC’96 contest by differential evolution,” Proceedings of the IEEE Congress on Evolutionary Computation, pp. 842–844
37.Price, K., (1996) “Differential Evolution: A Fast and Simple Numerical Optimizer,” Fuzzy Information Processing Society, pp. 524–527
38.Ponterosso, P., and Fox, D. S. J.,(1999) “Heuristically Seeded Genetic Algorithms Applied to Truss Optimisation,” Engineering with Computers, Vol. 15, No. 4,pp. 345−355
39.Rajeev, S., and Krishnamoorthy, C. S., (1992) “Discrete Optimization of Structures Using Genetic Algorithms,” Journal of Structural Engineering, Vol. 118, No. 5, pp. 1233−1250
40.Sun, H. C., Chai, S., and Wang, Y. F., (1995) “Discrete Optimum Design of Structures,” Dalian University of Technology.
41.Storn, R.(2008) “Differential evolution research – trends and open questions,”Advances in Differential Evolution, Vol.143, pp.1−31
42.Salajegheh, E., and Vanderplaats, G. N.,(1993) “Efficient Optimum Design of Structures with Discrete Design Variables,” Space Structures, Vol. 8, pp. 199−208
43.Seeley, T. D., (1995) “The Wisdom of the Hive ,”Harvard University Press, Cambridge, MA.
44.Storn, R. and Price, K., (1997) “Differential evolution —A simple and efficient adaptive scheme for global optimization over continuous spaces ,”Journal of Global Optimization, Vol. 11, No.4, pp. 341–359
45.Shi, Y., and Eberhart, R.C.,(1998) “A modified particle swarm optimizer,” Proceedings of the IEEE Congress on Evolutionary Computation, pp. 69–73
46.Salajegheh, E., and Salajegheh, J., (2002) “Optimum Design of Structures with Discrete Variables Using Higher Order Approximation,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, No.13−14,pp. 1395−1419
47.Sonmez, M. (2010a) “Discrete optimum design of truss structures using artificial bee colony algorithm, “ Structural and Multidisciplinary Optimization, Vol.43, No.1, pp.85–97
48.Sonmez, M. (2010b) “Artificial Bee Colony algorithm for optimization of truss structures,“ Applied Soft Coomputing, Vol. 11,No. 2, pp. 2406–2418
49.Swagatam, D., and Ponnuthurai N. S., (2011) “Differential Evolution: A Survey of the State-of-the-Art,”I Proceedings of the IEEE Congress on Evolutionary Computation,Vol. 15, No. 1,pp. 4−31
50.Tong, W. H., and Liu, W. H.,(2001) “An Optimization Procedure for Truss Structures with Discrete Design Variables and Dynamics Constrains.” Computers and Structures, Vol. 79,No. 2, pp. 155−162
51.Tereshko, V. and Loengarov, A., (2005) “Collective Decision-Making in Honey Bee Foraging Dynamics,” Computing and Information Systems Journal,Vol. 9, No. 1352-9404, pp. 3
52.Whitley, D., (1989) “The Genitor Algorithm and Seiection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best,” Proceeding of the Third International Conference on Genetic Algorithms, pp. 116−121
53.Wu, S. J., and Chow, P. T., (1995a) “The Application of Genetic Algorithmsto Discrete Optimation Problems,” Journal of the Chinese Society of Mechanical Engineers,Vol. 16,No. 6, pp. 587−598
54.Wu, S. J., and Chow, P. T., (1995b) “Integrated Discrete and Configuration Optimization of Trusses Using Genetic Algorithms,” Computers and Structures, Vol. 55, No. 4, pp. 695−702
55.Wang, D., Zhang W. H., and Jiang, J. S., (2002) “Truss Shape Optimi-zation with Multiple Displacement Constraints,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 33, pp. 3597−3612
56.Weifeng, G., Sanyang, L., and Lingling, H., (2012) “A global best artificial bee colony algorithm for global optimization,” Journal of Global Optimization and Applied Mathematics, Vol.236, No.11, pp.2741−2753
57.Xie, X. F., Zhang, W. J., and Yang, Z. L., (2002) “A Dissipative Particle Swarm Optimization,” Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 2, pp. 1456−1461
58.Yang, J., and Soh, C. K., (1997) “Structural Optimization by Genetic Algorithms with Tournament Selection,” Journal of Computing in Civil Engineering, ASCE, Vol. 11, No. 3, pp. 195−200
59.李維平、簡宛柔 (2010),「運用多群協同改良式差分演化演算法」,資訊科技國際研討會論文集。
60.李維平、簡璟蔚 (2009),「改良突變權重的差分進化演算法」,第二十屆國際資訊管理學術研討會。
61.李世炳、鄒忠毅 (2002),「簡介導引模擬退火法及其應用」,物理雙月刊,第二十四卷,第二期,第307−319 頁。
62.林俊榮 (2011.4),「以力法為分析工具之結構離散輕量化設計效率的探討」,碩士論文,國立中央大學土木工程研究所,中壢。
63.林豐澤 (2005) ,「演化式計算上篇:演化式演算法的三種理論模式」,智慧科技與應用統計學報,第3卷,第1期,第1-28頁。
64.胡曉輝(2001),「粒子群優化演算法介紹」,< http://web.ics.purdue.edu/~hux/tutorials.shtml >。
65.莊玟珊 (2007),「PSO–SA 混合搜尋法與其他結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢市。
66.陳冠廷 (2011.8),「以整合力法為分析工具之結構離散輕量化設計效率的探討」,碩士論文,國立中央大學土木工程研究所,中壢。
67.張慰慈 (2003),「DLM−GA 混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢市。
68.楊清淵 (2012),「運用菁英跳脫策略改良人工蜂群演算法」,中原大學資訊管理研究所,,中壢市。
69.焦懷緒 (2012),「最近蜜蜂策略改良人工蜂群演算法」,中原大學資訊管理研究所,,中壢市。
70.赫然、王永吉、王青、周津慧、胡陳勇 (2005),「一種改進的自適應逃逸微粒群算法及實驗分析」,軟件學報,第十六卷,第十二期,
第2036−2044 頁。
71.譚立靜、欒麗君、牛奔、孟亞寧 (2006),「一種求解函數優化的新型混合優化算法」,遼寧工程技術大學機械工程學院,遼寧。
指導教授 莊德興(De-Sing Jhuang) 審核日期 2013-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明