以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:247 、訪客IP:18.116.14.71
姓名 蔡欣妤(Hsin-Yu Tsai) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本研究採用加速鋰離子傳輸技術(Accelerated Lithium Migration Technique, ALMT),對具有鹼質與粒料反應潛勢的混凝土試體施加電場,將對鹼–矽反應(ASR)有抑制效的鋰離子送入混凝土,同時將試體內會誘發ASR的鈉及鉀離子移除。
本研究進行的ALMT試驗施加60 V定電壓,分別以氫氧化鋰及飽和氫氧化鈣溶液作為陽極與陰極槽電解液,試驗改變的參數包括混凝土試體的粒料體積比例、水灰比及試體長度,藉監測陰極電解液內的鋰、鈉及鉀離子的濃度與累積電荷量關係,分析試體長度(電極間距)對離子傳輸的影響,以及傳輸的效能。當混凝土水灰比愈大,愈有利於離子傳輸,移出完成時間愈快,所耗費之電能愈低。當混凝土長度越長,其初始電流越小,離子傳輸越差,其系統阻抗會隨時間增加。當水灰比固定,施加定電壓60 V,8 cm試體受熱效應及表面碳酸鈣沉澱之影響,因此離子傳輸效能比長度16 cm之試體差;不同長度進行通電時,當水灰比為0.58及0.68,試體長度為24 cm以下,皆有較佳的離子傳輸,且移出之鹼含量皆達80 %以上,且ALMT試驗後,其內部鋰/(鈉+鉀)莫耳比皆高於建議值0.74,因此,實務應用ALMT時,適合的電極間距為24 cm以下可達到抑制作用。摘要(英) This research is apply Accelerated Lithium Migration Technique which use electrical drive lithium ions into concrete specimens and drive alkali out simultaneously ,the concrete specimens has alkali aggregate expansion reaction potential.
The specimens undergo 60 V constant voltage during the ALMT testing process. The anolyte and catholyte solutions consisted of 1L 1N LiOH.H2O and saturated Ca(OH)2, respectively. This research parameter conditions of testing such as the aggregate/paste ratio of concretes, the w/c ratio and the distance of electrodes of testing to find the distance of electrodes appropriately by the migration of ions relating to cumulative power. And analyze the effect on specimen length (distance between electrodes) for ion transmission, and the transmission performance. The results show that the concrete has higher water/cement ratio, it is beneficial for the migration of ions, the time of alkali to be removed is faster and the electricity consumed lesser and the the system resistance increases during the testing. The specimen of 8 cm is unbeneficial for the migration of ions, because the heat effect and precipitation of calcium carbonate on surface. When the specimen length under the 24 cm, it is beneficial for the migration of ions, and out of the alkali content is more than 80 %, and the Li/(Na+K) molar ratio were higer than the recommend value of 0.74, it is the appropriate range of distance between electrodes.關鍵字(中) ★ 鹼-矽反應
★ 電化學
★ 電極間距
★ 加速鋰離子傳輸技術關鍵字(英) 論文目次 中文摘要 ............................................................................................. Ⅰ
英文摘要 ............................................................................................. Ⅱ
誌謝 .................................................................................................... Ⅲ
目錄 .................................................................................................... Ⅳ
圖目錄 ................................................................................................. Ⅸ
表目錄 .............................................................................................. XIV
第一章 緒論 .......................................................................................... 1
1-1 研究起源與動機 ................................................................... 1
1-2 研究目的 .............................................................................. 2
第二章 文獻回顧 ............................................................................... 3
2-1 鹼質與粒料反應種類 ........................................................... 3
2-1-1 鹼-氧化矽反應(ASR) .................................................... 3
2-1-2 鹼-矽酸鹽反應 ............................................................ 4
2-1-3 鹼-碳酸鹽反應(ACR) .................................................. 4
2-2 鹼質與粒料反應徵候 ........................................................... 5
2-2-1 混凝土構造物外觀徵候 ................................................ 5
2-2-2 混凝土構造物內部徵候 ................................................ 6
2-3 鹼質與粒料反應之機理 ....................................................... 8
2-3-1 鹼質與粒料反應之條件 ................................................ 8
2-3-2鹼質與粒料反應機理 ................................................... 10
2-4 鋰化合物抑制鹼質與粒料反應 .......................................... 12
2-4-1鋰化合物抑制鹼質與粒料反應之機理 ........................ 12
2-4-2 鋰化合物抑制鹼質與粒料反應之有效用量 ................ 13
2-5 電化學技術用於維修硬固混凝土 ...................................... 13
2-5-1 陰極防蝕法 ............................................................... 14
2-5-2 電化學去鹽法 ........................................................... 18
2-5-3 電化學還鹼法 ........................................................... 19
2-6 新拌混凝土預防鹼質與粒料之方法 .................................. 20
2-6-1 使用無活性之粒料 .................................................... 20
2-6-2 使用低鹼水泥 ........................................................... 20
2-6-3 使用輔助膠結材料 .................................................... 21
2-6-4 使用化學添加劑 ........................................................ 21
2-7 硬固混凝土預防ASR 之方法 ........................................... 22
2-7-1 硬固混凝土傳統維修方法 ........................................ 22
2-7-2 噴灑法 ....................................................................... 22
2-7-3 真空浸漬法 ............................................................... 23
2-7-4 硬固混凝土加壓維修方法 ........................................ 24
2-7-5 硬固混凝土化學維修方法 ........................................ 25
第三章 試驗規劃 ................................................................................ 32
3-1 初步試驗 ............................................................................ 32
3-1-1 初步試驗設計與配比 .................................................. 32
3-1-2 材料級配 ..................................................................... 32 3-1-3 試驗方法 ..................................................................... 32 3-1-4 初步試驗結果 ............................................................. 35
3-2 研究計畫 ............................................................................ 39
3-3 試驗材料 ............................................................................ 41
3-3-1 水泥 ............................................................................. 41
3-3-2 拌合水 ......................................................................... 42
3-3-3 試驗用粒料 ................................................................. 42
3-3-4 調整含鹼當量之藥劑 .................................................. 43
3-4 試體配比設計與符號說明 ................................................. 43
3-5 試驗方法與儀器設備 ......................................................... 45
3-5-1 粒料處理 ..................................................................... 45
3-5-2 混凝土試體拌製 .......................................................... 46
3-5-3 試體養護 ..................................................................... 48
3-5-4 試體切割 ..................................................................... 48
3-5-5 超音波混凝土試驗 ...................................................... 50
3-5-6 試體磨平、篩選 .......................................................... 50
3-5-7 試體通電前處理 .......................................................... 51
3-5-8 ALMT 介紹 ................................................................. 54 3-5-9 ALMT 通電模具 .......................................................... 54 3-5-10 離子濃度監測 ........................................................... 57
3-5-11 圓柱抗壓試驗 ............................................................ 60 3-5-12 試體內離子分佈 ........................................................ 60
第四章 結果與討論 ............................................................................. 63
4-1 圓柱試體通電前後耐久性之影響 ...................................... 64
4-1-1 抗壓強度 ................................................................... 64
4-1-2 圓柱試體超音波波速變化 ........................................ 66
4-2 ALMT試驗之陽離子傳輸行為 .......................................... 67
4-2-1 鋰離子、鈉離子及鉀離子傳輸過程 ......................... 67
4-2-2 鈉離子及鉀離子移出行為 ........................................ 70
4-2-3 鋰離子的傳輸行為 .................................................... 71
4-3 不同水灰比變化對通電成效之影響 .................................. 72
4-3-1 系統阻抗變化 ........................................................... 72
4-3-2 不同水灰比對鋰離子傳輸行為 ................................. 77
4-3-3 不同水灰比對鈉離子及鉀離子移出行為 ................. 79
4-3-4 不同水灰比對是體內鋰離子、鈉離子及鉀離子含量之
影響 ........................................................................... 83
4-3-5不同水灰比變化對通電成效影響之小結 .................. 86
4-4 粒料體積比變化對通電成效之影響 .................................. 86
4-4-1 系統阻抗變化 ........................................................... 87
4-4-2 粒料體積比變化對鋰離子傳輸行為 ......................... 88
4-4-3 粒料體積比變化對鈉離子及鉀離子移出行為 .......... 90
4-4-4 不同粒料體積比對試體內鋰、鈉及鉀離子含量之影響 ................................................................................... 91
4-4-5 粒料體積比變化對通電成效影響之小結 ................. 95
4-5 長度變化對通電成效之影響 .............................................. 95
4-5-1 系統阻抗變化 ........................................................... 96
4-5-2 長度變化對鋰離子傳輸行為 ................................... 101
4-5-3 長度變化對鈉離子及鉀離子移出行為 ................... 105
4-5-4 長度變化對是體內鋰離子、鈉離子及鉀離子含量之影響 ............................................................................. 114
4-5-5 造成8 cm試體鈉離子及鉀離子移出百分比減少之因素 ................................................................................. 124
4-5-6 不同長度通電成效總量整理 ................................... 126
4-5-7 長度變化對通電成效影響之小結 ........................... 128
第五章 結論與建議 ........................................................................... 130
5-1 結論 .................................................................................. 130
5-2 建議 .................................................................................. 131
參考文獻 ........................................................................................... 132參考文獻 [1]. Gillott, J.E., “Alkali-aggregate reactions in concrete,”Engineering Geology, Vol.9, pp.303-326, 1975.
[2]. Michael, D.A.Thomas, Benoit Fournier, Kevin J.Folliard, Jason H.Ideker, and Yadhira Resendez, “The Use of Lithium To Prevent or Mitigate Alkali-Silica Reaction in Concrete Pavements and Structures,” FHWA-HRT-06-133, pp.1-47,2007.
[3]. Kevin J.F., Michael, D.A.Thomas, Jason H. Ideker, East B., and Fournier B., “Case Studies Of Treating ASR-Affected Structures With Lithium Nitrate,” TRB Annual Meeting CD-ROM, 2009.
[4]. ASR リチウム工法協会,「http://www.asrli.jp/」。
[5]. 三原 孝文、岡田 繁之、江良 和徳、河原 健児,「亜硝酸リチウムを用いた内部圧入工法によるASRの抑制効果の検」,http://www.cgr.mlit.go.jp/ctc/tech_dev/kouryu/T-Space/ronbun/pdf/22_simane/22_simane_6-3.pdf 。
[6]. 蘇銘鴻,「電滲法運用於抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所,碩士論文,中壢,2002年。
[7]. Tsuneki Ichikawa, and Masazumi Miura, “Modified Model of Alkali-Silica Reaction,” Cement and Concrete Research, Vol.37, pp.1291-1297, 2007.
[8]. Swenson E.G., “A Canadian Reactive Aggregate Undetected by ASTM Test,” ASTM Bulletin, No.226, 1957.
[9]. Michael A. Ozol, “Alkali-Carbonate Rock Reaction,” ASTM International, 1994.
[10]. Tong L., and Tang M., “Expansion Mechanism of Alkali-Magnesite Reaction,”Cemen and Concrete Composites, Vol.21, pp361-373, 1999.
[11]. 王韡蒨,「台灣地區活性粒料之檢測方法研究」,國立中央大學土木工程研究所,碩士論文,中壢,2003年。
[12]. 許書王,「港灣構造物劣化探討(二)-鹼質與粒料反應」,港灣構造物安全檢測與評估研習會論文集,2002年。
[13]. Kevin J. Folliard, Michael D.A. Thomas, Benoit Fournier, Kimberly E. Kurtis, and Jason H. Ideker, “Interim Recommendations for the Use of Lithium to Mitigate or Prevent Alkali-Silica Reaction(ASR),” FHWA-HRT-06-073, pp1-94, 2006.
[14]. Diamond, S., “ASR—Another Look at Mechanisms,” Proceedings of the Eighth InternationalConference on Alkali-Aggregate Reaction in Concrete, Edited by K. Okada, S. Nishibayashi and M.Kawamura, Kyoto, Japan, pp. 83–94, August 1989.
[15]. Tsuneki Ichikawa “Alkali–Silica Reaction, Pessimum Effects and Pozzolanic Effect,”Cement and Concrete Research, Vol.39, pp.716–726, 2009.
[16]. Tremblay C., Bérubé M.A., Fournier B., Thomas M.D. and Folliard K.J., “Experimental Investigation of the Mechanisms by which LiNO3 is Effective Against ASR,” Cement and Concrete Research, Vol. 40, pp. 583-597, 2010.
[17]. McCoy, W.J., and Caldwell, A.G., “A New Approach to Inhibiting Alkali-Aggregate Expansion,”Journal of the American Concrete Institute,Vol. 22, No.9, pp.693–706,1951.
[18]. Lawrence M. and Vivian H.E., “The Reactions of Various Alkalis With Silica,” Australian Journal of Applied Science, Vol. 12, pp. 96-103, 1961.
[19]. Diamond S., “Unique Response of LiNO3 As an Alkali Silica
Reaction-Preventive Admixture,” Cement and Concrete Research, Vol.29, pp.1271-1275, 1999.
[20]. Stade, H., “On the Reaction of C-S-H (Di, Poly) With Alkali Hydroxides,” Cement and Concrete Research, Vol.19, pp.802-810, 1989.
[21]. Feng X., Thomas M.D.A., Bremner T.W., Balcom B.J., and Folliard K.J., “Studies On Lithium Salts To Mitigate ASR-Induced Expansion In New Concrete:A Critical Review,” Cement and Concrete Research, Vol.33, pp.913-919, 2003.
[22]. Blackwell, B.Q., Thomas, M.D.A., and Sutherland, A., “Use Of Lithium Tocontrol Expansion Due To Alkali-Silica Reaction In Concrete Containing U.K. Aggregates,”Durability of concrete proceedings Fourth CANMET/ACI International Conference, ACI SP 170-34, pp. 649-663, 1997.
[23]. Lumley J.S., “ASR Suppression by Lithium Compounds,” Cement and Concrete Research, Vol.27, No.2, pp.235-244, 1997.
[24]. 陳桂清、柯正龍、張道光、饒正、羅建明、林玲煥,「現有結構物安全評估及維護研究」,交通部運輸研究所,2002年。
[25]. Stokes, D.B., “Use Of Lithium to Combat Alkali-Silica Reactivity,”10th ICAAR, London, pp. 862-867, 1996.
[26]. 陳桂清,「港灣R.C.構造物腐蝕檢測與防蝕原理」,鋼筋混凝土構造物防蝕技術與應用研討會論文集,2002年。
[27]. 葉為忠,「構造物之腐蝕與防蝕機理」,公共工程之陰極防蝕應用研討會,2006年。
[28]. 陳桂清、簡坤葦、李釗,「以去鹽工法處理鹽害R.C.結構物之探討」,鋼筋混凝土構造物防蝕技術與應用研討會論文集,2002年。
[29]. Yuichiro Kawabata, Takanori Ikeda, Kazuo Yamada and Yasutaka Sagawa, “Suppression Effect of Fly Ash on ASR Expansion of Mortar/Concrete at the Pessimum Proportion,” 14 th International Conference on Alkali Aggregate Reaction , Austin, TX USA, 2012.
[30]. Yuichiro Kawabata, Kazuo Yamada and Hiromichi Matsushita, “The Effect of Composittion of Cement Hydrates With Supplementary Cementitious Materials on ASR Expansion,” 14 th International Conference on Alkali Aggregate Reaction, Austin, TX USA, 2012.
[31]. Toyoaki Miyagawa, Takashi Yamamoto, Takafumi Mihara and Kazunori Era, “Controlling ASR Expansion by Lithium Ion Pressurized Injection Method,”14 th International Conference on Alkali Aggregate Reaction, Austin, TX USA, 2012.
[32]. Whitmore D. and Sean Abbott Vector Construction Group, “Use Of an Applied Electric Field To Drive Lithium Ions into Alkali-Silica Reactive Structures,” 474 Dovercourt Drive Winnipeg, MB R3Y 1G4.
[33]. Takao Ueda, Yuuta Baba and Akira Nanasawa, “Effect of Electrochemical Penetration of Lithium Ions on Concrete Expansion Due to ASR,” Journal of Advanced Concrete Technology, Vol.9, No. 1, pp.31-39, 2011.
[34]. 陳登義,「以電化學技術抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所,碩士論文,中壢,1999年。
[35]. 林明鋒,「利用電化學方法抑制AAR對鋼筋混凝土材料特性影響之研究」,國立中央大學土木工程研究所,碩士論文,中壢,1999年。
[36]. 廖偉榕,「具AAR活性砂漿試體在不同單維電場強度作用之下離子傳輸行為研究」,國立中央大學土木工程研究所,碩士論文,中壢,2008年。
[37]. 劉慧茹,「活性砂漿試體受單維電場作用下陽離子傳輸行為之研究」,國立中央大學土木工程研究所,碩士論文,中壢,2009年。
[38]. 吳尚謙,「加速鋰離子傳輸技術對鋼筋和混凝土性質影響及工程應用初探」,國立中央大學土木工程研究所,碩士論文,中壢,2010年。
[39]. Wang, W.C., Liu, C.C. and Lee, C., “Effect of Electrolyte on the Performance in Electrochemical Repairing Technique for the Concrete Affected by ASR,”14 th International Conference on Alkali Aggregate Reaction, Austin, TX USA, 2012.指導教授 李釗 審核日期 2013-8-28 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare