博碩士論文 100521086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:3.138.137.199
姓名 陳家銘(Jia-Ming Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發
(Development of sensorless inverter-fed compressor drive system using a DC-link current sensor with torque compensation at low speed operation)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究目的是開發一應用於變頻壓縮機之無轉軸位置感測永磁同步馬達驅動系統。藉由凸極式反電動勢速度估測法作為無轉軸位置感測控制策略,並且結合空間向量脈波寬度調變控制藉以達成弦波驅動之永磁同步馬達驅動系統。利用單一直流鏈電流感測器之電流資訊重建馬達之三相電流技術,可降低電流感測元件之數目以達到節省成本之目的。利用空間向量脈波寬度調變技術,可藉由直流鏈電流在變頻器中功率元件導通的狀態和相電流之關係來重建馬達之三相電流。此外,藉由結合負載轉矩前饋補償的方式,可改善傳統僅使用比例-積分速度控制器在外部負載擾動時之動態性能。最後利用微芯公司所生產之數位訊號處理器實現變頻驅動系統,並在測試平台上初步實測並驗證其功能。
摘要(英) The objective of this thesis is to develop a sensorless permanent magnet synchronous motor (PMSM) drive for inverter-fed compressor drive system. First, a saliency back-EMF based speed estimation method combining with space vector pulse width modulation (SVPWM) is developed for sensorless control in order to achieve sinusoidal driven PMSM drive system. Then, to achieve cost savings, three-phase current signals are reconstructed by using only one DC-link current sensor. Three-phase current signals are reconstructed using the relationship between DC-link current and the inverter power components conduction states. Moreover, a load torque feedforward compensation method is implemented to improve the dynamic performance using traditional proportional-integral speed controller under external load disturbances. Furthermore, a Microchip DSP is adopted to develop the proposed inverter-fed drive system. Finally, some experimental results are given to verify the feasibility of the proposed sensorless control scheme.
關鍵字(中) ★ 永磁同步馬達
★ 以反電動勢為基礎之速度估測法
★ 三相電流重建
★ 負載轉矩補償
關鍵字(英) ★ permanent magnet synchronous motor
★ back EMF based speed estimation method
★ three-phase current reconstruction
★ load torque compensation
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧與簡介 4
1-3 論文大綱 7
1-4 本論文之貢獻 8
第二章 空調系統之介紹 9
2-1 前言 9
2-2 冷媒循環系統介紹 9
2-3 能源使用效率之計算及變頻與定頻空調之比較 14
第三章 變頻驅動器系統介紹 18
3-1 無感測變頻驅動器 18
3-2 變頻驅動控制板 19
3-3 數位訊號處理器 22
第四章 內藏式永磁同步馬達數學模型及以凸極式反電動勢為基礎之速度估測法則 26
4-1 前言 26
4-2 內藏式永磁同步馬達數學模型 28
4-2-1 座標變換介紹 28
4-2-2 內藏式永磁同步馬達在abc座標系下之數學模型 32
4-2-3 內藏式永磁同步馬達在αβ座標系下之數學模型 34
4-2-4 內藏式永磁同步馬達在dq座標系下之數學模型 38
4-3 凸極式反電動勢之定義 41
4-4 以凸極式反電動勢為基礎之無轉軸位置感測控制原理 44
4-5 一種基於啟動電流控制結合以凸極式反電動勢為基礎之無轉軸位置感測控制啟動策略 49
第五章 以單一直流鏈電流感測器重建馬達之三相電流技術 54
5-1 前言 54
5-2 空間向量脈波寬度調變控制 56
5-3 以直流鏈電流重建馬達之三相電流基本原理 69
5-4 非觀測區域內的直流鏈電流取樣 74
第六章 結合負載轉矩補償之無轉軸位置感測控制 81
6-1 前言 81
6-2 負載轉矩擾動觀測器 82
6-3 空調用壓縮機負載轉矩補償應用 84
第七章 模擬與實驗結果 86
7-1 前言 86
7-2 以凸極式反電動勢為基礎之無轉軸位置感測控制之啟動策略實驗結果 87
7-3 以凸極式反電動勢估測法結合以單一直流鏈電流感測器重建三相電流之實驗結果 89
7-4 以凸極式反電動勢估測法結合負載轉矩補償之模擬與實驗結果 95
第八章 結論與未來研究方向 102
參考文獻 103
作者簡歷 108
參考文獻 [1] 經濟部能源局,2012能源產業技術白皮書,民國101年4月。
[2] 經濟部能源局,101年能源統計手冊,民國101年。
[3] 陳加偉,冷凍空調節能技術之發展規劃,民國98年12月。
[4] 高子胤,以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發,中央大學電機工程系,碩士論文,民國100年7月。
[5] 林法正,魏榮宗,電機控制,滄海書局,民國99年。
[6] H. G. Joo, M. J. Youn, and H. B. Shin, “Estimation of Phase Currents from a DC-Link Current Sensor Using Space Vector PWM Method”, Electric Machines & Power Systems, vol. 28, pp. 1053-1069, 2000.
[7] Y. Cho, T. LaBella, and J. H. Lai, “A Three-Phase Current Reconstruction Strategy With Online Current Offset Compensation Using a Single Current Sensor”, IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2924-2933, 2012.
[8] W. C. Lee, D. S. Hyun, and T. K. Lee, “A Novel Control Method for Three-Phase PWM Rectifiers Using a Single Current Sensor”, IEEE Trans. Power Electron., vol. 15, no. 5, pp. 861-870, 2000.
[9] K. Sun, Q. Wei, L. Huang, and K. Matsuse, “An Overmodulation Method for PWM-Inverter-Fed IPMSM Drive With Single Current Sensor”, IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3395-3404, 2010.
[10] H. Kim and T. M. Jahns, “Phase Current Reconstruction for AC Motor Drives Using a DC Link Single Current Sensor and Measurement Voltage Vectors”, IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1413-1419, 2006.
[11] J. I. Ha, “Voltage Injection Method for Three-Phase Current Reconstruction in PWM Inverter Using a Single Sensor”, IEEE Trans. Power Electron., vol. 24, no. 3, pp. 767-775, 2009.
[12] Y. Gu, F. Ni, D. Yang, and H. Liu, “Switching-State Phase Shift Method for Three-Phase-Current Reconstruction With a Single DC-Link Current Sensor”, IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5186-5194, 2011.
[13] A. Consoli, S. Musumeci, A. Raciti, and A. Testa, “Sensorless vector and speed control of brushless motor drives”, IEEE Trans. Ind. Electron., vol. 41, no. 1, pp. 91-96, 1994.
[14] C. French and P. Acarnley, “Control of permanent magnet motor drives using a new position estimation technique”, IEEE Trans. Ind. Appl., vol. 32, no. 5, pp. 1089-1097, 1996.
[15] M. W. Degner, R. D. Lorenz, “Using multiple saliencies for the estimation of flux position and velocity in AC machine”, IEEE Trans. Ind. Appl., vol. 34, no. 5, pp. 1097-1104, 1998.
[16] M. Comanescu, L. Xu, “An improved flux observer based on PLL frequency estimation for sensorless vector control of induction motors”, IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 50-56, 2006.
[17] M. Tomita, T. Senjyu, S. Doki, and Okuma S, “New sensorless control for brushless DC motors using disturbance observers and adaptive velocity estimations”, IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 274-282, 1998.
[18] Z. Chen, M. Tomita, S. Ichikawa, S. Doki, and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimator of an extended electromotive force”, Proc. IECON 00, pp. 1814-1819, 2000.
[19] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on an extended EMF model and initial position estimation”, Proc. IECON 03, pp. 2150-2155, 2003.
[20] H. Kim, M. C. Harke, and R. D. Lorenz, “Sensorless control of interior permanent magnet machine drives with zero-phase lag position estimation”, IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1726-1733, 2003.
[21] L. Harnefors and H. P. Nee, “A general algorithm for speed and position estimation of AC motor”, IEEE Trans. Ind. Electron., vol. 47, no. 1, pp. 77-83, 2000.
[22] M. Ruderman, A. Ruderman, and T. Bertram, “Observer-Based Compensation of Additive Periodic Torque Disturbances in Permanent Magnet Motors”, IEEE Trans. Ind. Inf., vol. 9, no. 2, pp. 1130-1138, 2013.
[23] K. Hong and K. Nam, “A Load Torque Compensation Scheme Under the Speed Measurement Delay”, IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 283-290, 1998.
[24] M. Iwasaki and N. Matsui, “Robust Speed Control of IM with Torque Feed-forward Control”, IEEE Trans. Ind. Electron., vol. 40, no. 6, pp. 553-560, 1993.
[25] 張護繼,高子胤,林法正,空調用之直流變頻技術,電機月刊:能源資通訊節能科技專刊,228期, 民國98年12月。
[26] 林法正,葉超明,陳家銘,高效率空調系統變頻驅動技術,電機月刊:變頻器技術應用專輯,265期,1月號,2012年1月。
[27] 郭文瑋,變頻空調系統中無感測直流無刷馬達技術之研究,元智大學電機工程系,碩士論文,民國95年6月。
[28] 張哲銘,應用於冷凍設備無位置感測永磁同步馬達驅動系統之開發,國立清華大學電機工程系,碩士論文,民國97年6月。
[29] 張護繼,無感測器直流變頻壓縮機驅動系統之研製,中央大學電機工程系,碩士論文,民國99年7月。
[30] 葉超明,以智慧型凸極式反電動勢估測器為基礎之無感測變流器饋接型壓縮機驅動系統開發,中央大學電機工程學系,碩士論文,民國101年6月。
[31] 陳世杰,中央空調直接負載控制績效分類與評估系統,中原大學電機工程系,碩士論文,民國94年7月。
[32] 徐圍琪,廖建順,我國變頻空調機之SEER發展現況介紹,工業技術研究院冷凍空調與熱交換雙月刊第83期。
[33] 亞得力科技股份有限公司,http://www.prt-powerasis.com/customer.php.
[34] 東元電機股份有限公司, http://www.teco.com.tw.
[35] Microchip,dsPIC30F4011 datasheet.
[36] Texas Instruments,AM26LS32ACN datasheet.
[37] Microchip,MCP4922 datasheet.
[38] 瑞智精密股份有限公司, http://www.rechi.com
[39] 劉昌煥,交流電機控制,東華書局,民國92。
[40] J. H. Jang, J. I. Ha, M. Ohto, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection”, IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[41] Y. D. Yoon, S. K. Sul, S. Morimoto, and K. Ide, “High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection”, IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, 2011.
[42] K. Zhou and D. Wang, “Relationship Between Space-Vector Modulation and Three-Phase Carrier-Based PWM: A Comprehensive Analysis”, IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 186-196, 2002.
[43] 洪英智,以FPGA為基礎之類神經網路控制線性超音波馬達,碩士論文,東華大學電機研究所,民國97。
[44] 蔡孟庭,智慧型錯誤容忍控制六相永磁同步馬達驅動系統之開發,碩士論文,國立中央大學電機研究所,民國101年7月。
[45] S. Z. Mohamed, A. M. Mahmoud, and S. S. Shokry, “High Dynamic Performance of Interior Permanent Magnet Synchronous Motor Drives Based on Feed-forward Load Torque Compensator”, Electric Power Components and Systems, 41, 3, pp. 235-251, 2012.
[46] B. G. Gu, J. H. Choi, I. S. Jung, “Online Load Torque Compensator for Single Rolling Piston Compressor”, 8th International Conference on Power Electronics – ECCE Asia, 2011.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2013-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明