參考文獻 |
[1] J. M. Rollett, “Stability and power gain invariants of linear two ports,” IRE Trans. on Circuit Theory, vol.9, no.1, pp. 29–32, Mar. 1962.
[2] M. L. Edwards and J. H. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 12, pp. 2303–2311, Dec. 1992.
[3] J. R. Long, “Monolithic transformers for silicon RFIC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sept. 2000.
[4] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer–a new power-combining and impedance-transformation technique,“ IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316–331, Jan. 2002.
[5] P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, and A. M. Niknejad, “A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS,” IEEE J. Solid-State Circuits,, vol. 43, no. 5, pp. 1054–1063, May 2008.
[6] K. H. An, O. Lee, H. Kim, D. H. Lee, J. Han, K. S. Yang, Y. Kim, J. J. Chang, W. Woo, C.-H. Lee, H. Kim, and J. Laskar, “Power-combining transformer techniques for fully-integrated cmos power amplifiers,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1064–1075, May 2008.
[7] Y.-N. Jen, J.-H. Tsai, T.-W. Huang, and H. Wang, “Design and analysis of a 55–71-GHz compact and broadband distributed active transformer power amplifier in 90-nm cmos process,” IEEE Trans. Microw. Theory Tech., vol. 57, NO. 7, Jul. 2009.
[8] T. LaRocca, J. Y.-C. Liu, and M.-C. F. Chang, “60 GHz CMOS amplifiers using transformer-coupling and artificial dielectric differential transmission lines for compact design,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1425–1435, May 2009.
[9] J. Oh, B. Ku, and S. Hong, “A 77-GHz CMOS power amplifier with a parallel power combiner based on transmission-line transformer,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 7, pp. 2662–2669, Jul. 2013.
[10] Z. Xu, Q.-J. Gu, and M.-C. F Chang, “A 100–117 GHz W-band CMOS power amplifier with on-chip adaptive biasing,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 547–549, Oct. 2011.
[11] Q.-J. Gu, Z. Xu, and M.-C. F Chang, “Two-way current-combining W-band power amplifier in 65-nm CMOS," IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1365–1374, May 2012.
[12] Jerry Sevick, Transmission Line Transformers, 4th edition, SciTech Publishing, 2001.
[13] G. Guanella, “New method of impedance matching in radio-frequency circuits,” Brown-Boveri Rev., vol. 31, pp. 327–329, Sept. 1944.
[14] C. L. Ruthroff, “Some broadband transformers,” Proc. IRE, vol. 47, pp. 1337–1342, Aug. 1959.
[15] M. Engels, R. H. Jansen, W. Daumann, R. M. Bertenburg, and F.-J. Tegude, ”Design methodology, measurement and application of MMIC transmission line transformers,” in Proc. IEEE Int. Microw. Symp. Dig., May 16–20, 1995, Vol.3, pp.1635–1638.
[16] J. Horn, G. Boeck, “Integrated transmission line transformer,” in Proc. IEEE Int. Microw. Symp. Dig., Jun. 6–11, Vol.1, pp. 201–204.
[17] D. H. Lee, D. Baek, H. Kim, and S. Hong, “An on-chip low loss 1:9 transmission line transformer and its model,” Microw. Opt. Tech. Lett., vol. 48, no. 10, pp. 1936–1940.
[18] R. F. Sobrany and I. D. Robertson, “Ruthroff transmission line transformers using multilayer technology,” 33rd European Microwave Conference (EuMC), Munich, Germany, Oct. 7–9, 2003, pp.559–562.
[19] T. A. Winslow, “Ultra broadband MMIC impedance transformer,” 41st European Microwave Conference (EuMC), Manchester, Oct. 10–13, 2011, pp.854–857.
[20] H.-Y. Chung, Y.-C. Hsu, H.-K. Chiou, D.-C. Chang, and Y.-Z. Juang, “Broadband and low-loss Ruthroff-type transmission line transformer in integrated passive devices technology,” in Proc. IEEE Int. Microw. Symp. Dig., Jun. 17–22, 2012, pp.1–3.
[21] J. Roderick, and H. Hashemi, “A 0.13µm CMOS power amplifier with ultra-wide instantaneous bandwidth for imaging applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 8–12, 2009, pp. 374–375.
[22] H.-Y. Liao, M.-W. Pan and H.-K. Chiou, “Fully-integrated CMOS class-E power amplifier using broadband and low-loss 1:4 transmission-line transformer,” Electron. Lett., vol. 46, no. 22, pp. 1490–1491,Oct. 2010.
[23] T. Nakatani, J. Rode, D. F. Kimball, L. E. Larson, and P. M. Asbeck, “Digitally-controlled polar transmitter using a watt-class current-mode class-D CMOS power amplifier and Guanella reverse balun for handset applications,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1104–1112, May 2012.
[24] H.-K. Chiou and H.-Y. Chung, “2.5–7 GHz single balanced mixer with integrated Ruthroff-type balun in 0.18 µm CMOS technology,” Electron. Lett., vol. 49, no. 7, pp. 474–475, Mar. 2013.
[25] H.-Y. Chung, C.-W. Kuo, and H.-K. Chiou, “A full X-band power amplifier with an integrated Guanella-type transformer and a predistortion linearizer in 0.18-µm CMOS,” Microw. Opt. Tech. Lett., vol. 55, no. 9, pp. 2229–2232, Sep. 2013.
[26] D. M. Pozar, Microwave Engineering, 3rd edition,John Wiley & Sons, 2004
[27] C. Lu, A.-V. H. Pham, M. Shaw, and C. Saint, “Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 11, pp. 2320–2328, Nov. 2007.
[28] B. Sewiolo, G. Fischer, and R. Weigel, ”A 12-GHz high-efficiency tapered traveling- wave power amplifier with novel power matched cascode gain cells using SiGe HBT transistors,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 10, pp. 2329–2336, Oct. 2009.
[29] H.S. Kim, K.Y. Kim, W.Y. Kim, Y.S. Noh, I.B. Yom, I.Y. Oh, and C.S. Park, “SiGe MMIC power amplifier with on-chip lineariser for X-band applications, ” Electron. Lett., vol. 45, no. 20, pp. 1036–1037 , Sep. 2009.
[30] P.-S. Chi, Z.-M. Tsai, J.-L. Kuo, K.-Y. Lin, and H. Wang, “An X-band, 23.8-dBm fully integrated power amplifier with 25.8% PAE in 0.18-μm CMOS technology,” 40th European Microwave Conference (EuMC), Paris, France, Sep. 28–30, 2010, pp.1678–1681.
[31] H. Wang, C. Sideris, and A. Hajimiri, “A CMOS broadband power amplifier with a transformer-based high-order output matching network,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2709–2722, Dec 2010.
[32] B.-H. Ku, S.-H. Baek, and S. Hong, “A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1599–1609, Jun. 2011.
[33] Y.-C. Hsu, Y.-S. Chen, T.-C. Tsai and K.-Y. Lin “A K-band CMOS cascode power amplifier using optimal bias selection methodology, ” in Proc. Asia-Pacific Microw. Conf. (APMC), Melbourne, Dec. 5–8, 2011 , pp. 793–796
[34] H. Zhang and E. Sánchez-Sinencio, “Linearization techniques for CMOS low noise amplifiers: a tutorial,” IEEE Trans. Circuits and Syst. I: Reg. Papers, vol. 58, no. 1, pp. 22–36, Jan. 2011.
[35] L. R. Kahn, “Single-sideband transmission by envelope elimination and restoration” in Proc. I.R.E., vol. 40, no. 1, pp. 803–806, Jul. 1952.
[36] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang “Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487–2496, Jun. 2006.
[37] J.-H. Tsai, C.-H. Wu, H.-Y. Yang, and T.-W. Huang “A 60 GHz CMOS power amplifier with built-in pre-distortion linearizer,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 676–678, Dec. 2011.
[38] Y.-N. Jen, J.-H. Tsai, C.-T. Peng, and T.-W. Huang, “A 20 to 24 GHz +16.8 dBm fully integrated power amplifier using 0.18-μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 42–44, Jan. 2009.
[39] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio, ” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007.
[40] C.-H. Lin and H.-Y. Chang, “A broadband injection-locking class-E power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3232–3242, Oct. 2012
[41] X. Guan and A. Hajimiri, “ A 24 GHz CMOS front-end,” IEEE J. Solid State Circuits, vol. 39, no.2, pp. 368–373, Feb. 2004.
[42] J.-W. Lee and S.-M. Heo, “A 27 GHz, 14 dBm CMOS power amplifier using 0.18 μm common-source MOSFETs,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 11, pp. 755–757, Nov . 2008.
[43] A. Vasylyev, P. Weger and W. Simburger, “Ultra-broadband 20.5–31 GHz mono lithically-integrated CMOS power amplifier,” Electron. Lett., vol. 41, no. 23, pp.1281–1282, Nov 2005.
[44] P.-C. Huang, J.-L. Kuo, Z.-M. Tsai, K.-Y. Lin and H. Wang, “A 22-dBm 24-GHz power amplifier using 0.18-μm CMOS technology,” in Proc. IEEE Int. Microw. Symp. Dig., May 23–28, 2010, pp. 248–251.
[45] J.-W. Lee and B.-S. Kim, “A K-band high-voltage four-way series-bias cascode power amplifier in 0.13 μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 408–410, Jul. 2010.
[46] P.-C. Huang, K.-Y. Lin and H. Wang, “A 4–17 GHz Darlington cascode broadband medium power amplifier in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 43–45, Jan. 2010.
[47] K.-C. Lin, H.-K. Chiou, K.-H. Chien, T.-Y. Yang, P.-C. Wu, C.-L. Ko and Y.-Z. Juang, “A 4.2-mW 6-dB gain 5–65-GHz gate-pumped down-conversion mixer using Darlington cell for 60-GHz CMOS receiver,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp. 1516–1522, Apr. 2013.
[48] K. Krishnamurthy, R. Vetury, S. Keller, U. Mishra, M. J. W. Rodwell, and S. I. Long, “Broadband GaAs MESFET and GaN HEMT resistive feedback power amplifiers,” IEEE J. Solid-State Circuits, vol. 35, pp.1285–1292, Sep. 2000.
[49] K. W. Kobayashi, “Linearized darlington cascode amplifier employing GaAs PHEMT and GaN HEMT techonologies,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2116–2122, Oct. 2007.
[50] S.-H. Weng, H.-Y. Chang and C.-C. Chiong, “Design of a 0.5–30 GHz Darlington amplifier for microwave broadband applications,” in Proc. IEEE Int. Microw. Symp. Dig., Anaheim, May 23–28, 2010, pp.137–140.
[51] P.-C. Huang, Z.-M. Tsai, K.-Y. Lin, and H. Wang “A 17–35 GHz broadband, high Efficiency PHEMT power amplifier using synthesized transformer matching technique,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 112–119, Jan. 2012.
[52] S. Pinel, S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, and J. Laskar, “A 90 nm CMOS 60 GHz radio,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 3–7, 2008, pp. 130–131.
[53] M. Tanomura, Y. Hamada, S. Kishimoto, M. Ito, N. Orihashi, K. Maruhashi, and H. Shimawaki, “TX and RX front-ends for 60GHz band in 90nm standard bulk CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 3–7, 2008, pp. 558–635.
[54] N. Kurita and H. Kondoh, “60GHz and 80GHz wideband power amplifier MMICs in 90nm CMOS technology,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 7–9, 2009, pp.39–42.
[55] J.-H. Tsai, Y.-L. Lee, T.-W. Huang, C.-M. Yu, J. G. J. Chern, “A 90-nm CMOS broadband and miniature Q-band balanced medium power amplifier,” in Proc. IEEE Int. Microw. Symp. Dig., Honolulu, HI, Jun. 3–8, 2007, pp.1129–1132.
[56] D. Chowdhury, P. Reynaert, and A. M. Niknejad,”A 60 GHz 1V + 12.3 dBm transformer -coupled wideband PA in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 3–7, 2008, pp. 560–635.
[57] W. L. Chan and J. R. Long, “A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V Supply,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554–564, Mar. 2010.
[58] C.-Y. Cha and S.-G. Lee, “A 5.2-GHz LNA in 0.35-µm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance,” IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 669–672, Apr. 2003.
[59] S. A. Z. Murad, R. K. Pokharel, R. Sapawi, H. Kanaya, and K. Yoshida, “High efficiency, good linearity, and excellent phase linearity of 3.1–4.8 GHz CMOS UWB PA with a current-reused technique,” IEEE Trans. Consumer Electron., vol. 56, no. 3, pp. 1241–1246, Aug. 2010.
[60] V. Giammello, E. Ragonese, and G. Palmisano “A transformer-coupling current-reuse SiGe HBT power amplifier for 77-GHz automotive radar,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1676–1683, Jun. 2012.
[61] J. Lee, Y.-A. Li, M.-H. Hung, and S.-J. Huang “A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746–2756, Dec. 2010.
[62] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[63] W.-H. Hung, H.-S. Chen, S.-H. Chou, and L.-H. Lu, “An 18dBm transmitter frontend with 29% PAE for 24GHz FMCW radar applications,” in Proc. IEEE Radio Frequency Integrated Circuits Symp, Jun. 17–19, 2012, pp.137–140.
[64] J. Li, Y.-Z. Xiong, W. L. Goh, and W. Wu “A 27–41 GHz frequency doubler with conversion gain of 12 dB and PAE of 16.9%,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 427–429, Aug. 2012.
[65] L. Wang, Y.-Z. Xiong, B. Zhang, S.-M. Hu, and T.-G. Lim, “Millimeter-wave frequency doubler with transistor grounded-shielding structure in 0.13-µm SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1304–1310, May 2011.
[66] D. Ozis, N. M. Neihart, and D. J. Allstot,” Differential VCO and passive frequency doubler in 0.18um CMOS for 24GHz applications,” in Proc. IEEE Radio Frequency Integrated Circuits Symp, Jun. 11–13, 2006, pp.1–4.
[67] J. Yang, C.-Y. Kim, D.-W. Kim, and S. Hong, “Design of a 24-GHz CMOS VCO With an asymmetric-width transformer,” IEEE Trans. Circuits and Syst. II: Exp. Briefs, vol. 57, no. 3, pp. 173–177, Mar. 2010.
[68] A. Natarajan, A. Komijani, and A. Hajimiri, “Fully integrated 24-GHz phased-array transmitter in CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2502–2514, Dec. 2005.
[69] Y. Cao, M. Tiebout, V. Issakov, “A 24GHz FMCW radar transmitter in 0.13 μm CMOS” in Proc. 34th European Solid-State Circuits Conference (ESSCIRC), Sept. 15–19, 2008, pp.498–501.
[70] B. Razavi, Design of analog CMOS integrated circuits, McGraw-Hill, 2001.
[71] R. Ludwig and G. Bogdanov, RF Circuit Design: Theory & Applications, 2nd Edition, Prentice Hall, 2008.
[72] 廖顯原,「應用於矽基功率放大器之傳輸線變壓器與穿透矽通孔之研究」,國立中央大學,博士論文,民國100年。
[73] 陳瑋強,「Ku/K頻段壓控振盪器及注入鎖定除頻器暨毫米波fT-倍頻電路壓控振盪器與寬頻混頻器之研製」,國立中央大學,碩士論文,民國98年。
[74] 黃亭堯,「應用傳輸線變壓器與功率結合技術於全積體化功率放大器之研究」,國立中央大學,碩士論文,民國100年。
[75] 林喬盛,「應用功率結合變壓器之達靈頓功率放大器與X頻段pHEMT製程功率放大器研製」,國立中央大學,碩士論文,民國101年。
[76] 鄭淵勵,「 C/V頻段全積體整合矽製程之寬頻功率放大器研製」,國立中央大學,碩士論文,民國101年。
[77] 張盛富,張嘉展,無線通訊射頻晶片模組設計-射頻晶片篇,全華圖書股份有限公司,民國96年。 |