博碩士論文 100521058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.220.188.4
姓名 曾瀚陞(Han-sheng Tseng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 調變複晶矽鍺之鍺含量與材料維度對於熱傳導率以及電傳導率之影響評估研究
(Ge-content and geometrical effects on thermal conductivity and electrical conductivity of poly-Si1-xGex nanopillars)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 量子點的電子能階★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性
★ 自對準矽奈米線金氧半場效電晶體之研製★ 鍺浮點記憶體之研製
★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析★ 應用於數位電視頻帶之平衡不平衡轉換器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用低壓化學氣相沉積(LPCVD)方式沉積不同鍺含量之複晶矽鍺薄膜,再藉由電子束微影與乾蝕刻的方式定義製作出約80-120 nm柱寬的奈米柱(線)陣列。並藉由植入不同摻雜源,來觀察n型與p型複晶矽鍺奈米柱的溫度相依之熱傳導率與電傳導率。
本文藉由三倍頻量測法以及四點探針法對於300-340 nm高的複晶矽鍺柱陣列分別進行熱傳導率以及電傳導率之量測分析。實驗觀察得知複晶矽鍺奈米柱之熱傳導率會隨著溫度升高而呈現1/T下降之趨勢,其溫度相依之行為模式與鍺塊材之熱傳導率類似。有趣的是,隨著鍺含量之增加可進一步藉由合金散射降低奈米柱之熱傳導係數。奈米柱所呈現之熱傳導率值介於1-2 W/m.K,遠較塊材鍺之熱傳導率(60W/m.K)下降50倍以上。足以佐證可以利用低維度以及合金的設計與製作來大幅降低複晶矽鍺奈米柱的熱傳導率。藉由溫度相依之功率因素(n)之分析也証明此低熱導率是分別由聲子散射、合金散射及晶粒邊界散射等機制在奈米尺度下交互作用所致。可喜的是,聲子散射及晶粒邊界散射並未影響電荷在奈米柱(線)的傳輸能力。藉由帶入矽塊材的席貝克係數及先前所量測到的電導率可估算出矽鍺奈米柱之ZT值。P型矽鍺奈米柱因具有較低的熱傳導率以及較高的電導率,因此擁有接超過1的高ZT值。
本文成功地運用鍺含量與維度設計來製作出複晶矽鍺奈米柱(線),並獲得低熱傳導率、高電導率以及高ZT值。此奈米柱陣列未來可運用於奈米熱電致冷器元件之熱點主動層,提供在晶片上積體電路之局部熱點直接冷卻之應用。
摘要(英) This thesis experimentally realized Si1-xGex nanopillar array and investigated effects of Ge content and geometrical sizes of poly-Si1-xGex nanopillar on the electrical and thermal conductivities in temperature of 100-400K. The fabrication of poly-Si1-xGex nanopillar started with the deposition of a tri-layer of Si3N4/poly-Si1-xGex (x=0, 0.12, 0.24 and 0.36)/Si3N4 thin film over the Si substrate using low pressure chemical vapor deposition (LPCVD). The dense array of nanopillar with diameter of 80-120 nm was generated using the combination of e-beam lithography and SF6/C4F8 etching, followed by implanting phosphorous and boron dopants. To understand effects of Ge content and dopants on the carrier and phonon transport within poly-Si1-xGex nanopillar array, temperature-dependent characterisitics of the thermal conductivity and electrical conductivity of poly-Si1-xGex nanopillar array were conducted using the three omega method and four-point-probe technique. measured effective thermal conductivity of poly-Si1-xGex nanopillar array declines inversely with temperature (k*(T) ∝ 1/T ) just like in bulk Ge. An interesting finding is that the thermal conductivity of poly-Si1-xGex nanopillars appears to have an inverse dependence on the Ge content as a consequence of the enhanced alloy scattering. The thermal conductivity of nanopillars is around 1-2 W/m•K, which is much below the thermal conductivity of bulk Ge (60 W/m•K) with reduction factor of 50. We demonstrated the low-dimensional nanostructure and design of Ge content in SiGe alloy, leading to a large reduction in the thermal conductivity for poly-Si1-xGex nanopillars. Analysis of temperature-dependent thermal conductivity shows that the interactions between phonon scattering, alloy scattering and boundary scattering drag the phonon transport within the nanopillars when the pillar size is less than 100nm, primarily because of the geometrical size is less than the phonon wavelength. Fortunately the reduced dimensionality does not affect the electron transport in the nanopillars, consequently, the estimated ZT possibly achieves to unity at T = 400 K, primarily a result of a much higher electrical conductivity and a fairly lower thermal conductivity. We envisaged the reported the enhanced electrical conductivity and reduced thermal conductivity conducive for the further fabrication of poly-Si1-xGex nanopillars thermoelectric nanocoolers.
關鍵字(中) ★ 矽鍺合金
★ 矽鍺奈米柱
★ 熱傳導率
★ 電傳導率
關鍵字(英)
論文目次 中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XII
第一章 簡介與研究動機 1
1-1前言 1
1-2熱電效應 2
1-3運用矽鍺材料於熱電轉換上之應用與介紹 3
1-4研究動機 5
1-5論文架構 6
第二章 熱傳導率之三倍頻量測法 16
2-1前言 16
2-2三倍頻熱傳導率量測法介紹 16
2-3三倍頻熱傳導率量測原理與實驗架構 17
第三章 複晶矽鍺奈米柱(線)陣列之製程與流程 25
3-1前言 25
3-2沉積製程中調變複晶矽鍺薄膜之鍺含量變化 25
3-3複晶矽鍺薄膜結構下進行離子佈植與無離子佈植摻雜 26
3-4微影與蝕刻製程之複晶矽鍺奈米柱(線)陣列製作 26
3-5後段製程之定義鋁金屬電極製作 28
第四章 複晶矽鍺奈米柱(線)陣列之熱傳導率及電傳導率量測分析與討論 34
4-1前言 34
4-2複晶矽鍺奈米柱(線)陣列之熱傳導率量測分析 34
4-2-1調變複晶矽鍺奈米柱(線)陣列之鍺濃度對熱傳導率之影響 34
4-2-2調變複晶矽鍺奈米柱(線)陣列之摻雜源對熱傳導率之影響 36
4-2-3調變複晶矽鍺奈米柱(線)之寬度對熱傳導率之影響 38
4-3複晶矽鍺奈米柱(線)陣列之電傳導率量測分析 39
4-3-1調變複晶矽鍺奈米柱(線)陣列之鍺濃度對電傳導率之影響 39
4-3-2調變複晶矽鍺奈米柱(線)陣列之摻雜源對電傳導率之影響 39
4-4複晶矽鍺奈米柱(線)陣列之熱電優值(ZT)分析 40
第五章 總結與未來展望 47
文獻資料 49
參考文獻 [1] 陳洋元,“高效率新穎奈米熱電材料之研發及其於再生能源之應用”,年度新增主題計畫簡介,24-26頁,民國95年
[2] G. J. Snyder, M. Soto, R. Alley, D. Koester, and B. Conner, “Hot spot cooling using embedded thermoelectric coolers,” Twenty-second IEEE SEMI-THERM Symposium., pp. 135-143, Mar. 2006.
[3] W. H. Park and C. K. Ken Yang, “Analysis of cooling a microprocessor using embedded thermoelectric coolers,” Microsystem, Packaging, Assembly and Circuits Technology Conference., pp.495-498, Oct. 2011.
[4] J. F. Li, W. S. Liu, L. D. Zhao, and M. Zhou, “High-performance nanostructured thermoelectric materials,” NPG Asia Materials., vol. 2, pp. 152-158, Oct. 2010.
[5] K. Ikoma, M. Munekiyo, K. Furuya, M. Kobayashi, T. Izumi, and K. Shinohara, “Thermoelectric module and generator for gasoline engine vehicles,” Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on., pp. 464-467, May. 1998.
[6] R. M. Atta, “Solar water condensation using thermoelectric coolers,” International Journal of Water Resources and Arid Environmens., vol. 2, pp. 142-145, 2011
[7] C. J. Glassbrenner and Glen A. Slack, “Thermal conductivity of silicon and germanium from 3 oK to the melting point,” Phys. Rev., vol. 134, no. 4A, pp. A1058-A1069, May. 1964.
[8] M. C. Steele, and F. D. Rosi, “Thermal conductivity and thermoelectric power of germanium-silicon alloys,” J. Appl. Phys., vol. 29, no. 11, pp. 1517-1520, Nov. 1958.
[9] G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nature Materials., vol. 7, pp. 105-114, Feb. 2008.
[10] G. Joshi, H. Lee, Y. C. Lan, X. Wang, G. H. Zhu, D. Z. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. F. Ren, “Enhanced thermoelectric figure of merit in nanostructured p-type silicon germanium bulk alloy,” Nano Lett., vol. 8, pp. 4670-4674, Oct, 2008.
[11] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren, “Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy,” Appl. Phys. Lett., vol. 93, no. 19, pp. 193121-193121-3, Nov, 2008.
[12] H. J. Kim, I. Kim, H. J. Choi, and W. C. Kim, “Thermal conductivities of Si1−xGex nanowires with different germanium concentrations and diameters,” Appl. Phys. Lett., vol. 96, no. 23, pp. 233106-233106-3, Jun, 2010.
[13] E. K. Lee, L. Yin, Y. J. Lee, J. W. Lee, S. J. Lee, J. H. Lee, S. N. Cha, D. M. Whang, G. S. Hwang, K. Hippalgaonkar, A. Majumdar, Choongho Yu, B. L. Choi, J. M. Kim, and K. Kim, “Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties,” Nano Lett., vol. 12, pp. 2918-2923, Apr. 2012.
[14] J. R. Szczech, J. M. Higgins, and S. Jin, “Enhancement of the thermoelectric properties in nanoscale and nanostructured materials,” J. Mater. Chem., vol. 21, no. 5, pp. 4037-4055, 2011.
[15] A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature., vol. 451, pp. 163-167, Jan, 2008
[16] D. Y. Li, Y. Y. Wu, P. Kim, L. Shi, P. D. Yang, and A. Majumdar, “Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett., vol. 83, no. 14, pp. 2934-2936, Oct, 2003.
[17] Zhano Wang and Natalio Mingo, “Diameter dependence of SiGe nanowire thermal conductivity,” Appl. Phys. Lett., vol. 97, no. 10, pp. 101903-101903-3, Sep, 2010.
[18] D. G. Cahill, “Thermal conductivity measurement from 30 to 750 K:the 3 method,” Review of Scientific Instrument, vol. 61, pp. 802-808, 1990.
[19] S. M. Lee and D. G. Cahill, “Heat transport in thin dielectric films,” J. Appl. Phys., vol. 81, no. 6, pp. 2590-2595, Dec. 1996.
[20] 張榮恩,「低熱傳導率之多重鍺量子點陣列薄膜製程與量測分析」,國立中央大學,碩士論文,2011。
[21] P. N. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, “Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires,” Nano Lett., vol. 10, pp.1120-1124, Mar.2010.
[22] 邱敬堯,「應用於微型熱電致冷器之高效能鍺量子點與矽鍺奈米柱薄膜開發研究」,國立中央大學,碩士論文,2013。
指導教授 李佩雯、郭明庭
(Pei-wen Li、Ming-ting Kuo)
審核日期 2013-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明