博碩士論文 100322032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:223 、訪客IP:3.14.129.236
姓名 陳政昇(Cheng-Sheng Chan)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 基樁之減振與沉陷特性
(Vibration suppression and settlement properties of pile)
相關論文
★ 動力夯實之有效影響深度與地表振動阻隔研究★ 砂土層中潛盾機地中接合漏水引致地層下陷之案例探討
★ 動力壓密工法施工引致地表振動之阻隔★ 音波式圓錐貫入試驗於土層界面判定之應用
★ 孔洞開挖後軟弱地盤之沉陷行為★ 超載對打設排水帶後軟弱地盤壓密行為之影響
★ 山岳隧道湧水處理之研究★ 砂土中基樁側向位移之改良研究
★ 圓錐貫入試驗中土壤音壓之研究★ 水泥混合處理砂質土壤液化特性之改良研究
★ 扶壁改善深開挖擋土壁體變形行為之研究★ 微音錐應用於土壤音射特性之研究
★ 黏性土壤受定量擠壓變形後之力學行為★ 黏土中短樁側向位移之改良研究
★ 砂土經水泥改良後之力學性質★ 黏土中模型樁側向位移之改良研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣公路與鐵路遍佈各地,為了保護鄰近區域之環境與行車安全,甚多區段採用橋樑結構,並由墩柱和基樁支撐,當車輛或是列車駛過橋梁時,對橋面版施加衝擊能量,此類能量透過橋墩傳遞至樁基礎,使基樁和周圍的土壤發生振動與沉陷。本研究嘗試設置減振器於基樁樁頭,改變基樁承載瞬間載重之機制,讓基樁承受瞬間載重的衝擊減少,降低基樁的沉陷量,而進行了一系列的室內模型試驗。以峴港砂填充於圓桶形土槽中模擬現地情況,並在砂土中央貫入模型樁,用不同高度的落錘衝擊樁頭模擬車輛或是列車的瞬間衝擊力與靜載重,並於砂土層中之不同深度埋設加速度計量測樁周土壤振動,設置兩支LVDT量測樁身永久沉陷量和減振器上部的動態變位量。研究結果顯示,在樁頭加設減振器可獲得良好的改良效果,例如未改良模型樁受落錘衝擊時,樁身永久沉陷量為0.0610mm,採用液壓減振器,則基樁永久沉陷量可降至0.0135mm,且減振器之最大動態變位量只有0.0879mm,在規範的容許範圍之內,同時也有效降低模型樁各深度的振動量。
摘要(英) The nets of highway and railway are extending to everywhere in Taiwan. To protect the environment of the surrounding area or to keep the safety of transportation, many parts of these traffic constructions maybe designed as bridge which may be supported by pier and pile foundations. When vehicles or trains pass through these constructions, some impact or vibration loading will be caused. This kind of loading energy maybe transferred to the piers and the piles. This may cause vibration of the surrounding soil layer or settlement of the pile foundation. This research tried to set a shock absorber on pile head to improve the transfer mechanism of shock loading, and expect to reduce the vibration on soil and settlement of pile foundation. A series of model pile tests were performed in laboratory. In these tests, the Danang sand was filled in a cylindrical test pit to simulate sand layer and a steel pipe was set at the center of this test pit as model pile. Drop a steel hammer with various heights on the head of model pile to simulate the shock or loading of passing vehicle or train. The acceleration data was measured with accelerometers set at various imbedded depth of model pile. And the permanent settlement of pile shaft and dynamic displacement of shock absorber were measured with two sets of LVDT. The experimental results showed that an excellent improvement effect is obtained by setting a shock absorber on pile head. For instance, the permanent settlement of model pile improved with shock absorber is reduced to 0.0135mm, while the value of the untreated model pile is 0.061mm. Moreover, the maximum dynamic displacement of shock absorber is 0.0879mm which is smaller than the value limited by the design code. It is also observed that the vibrations at various depths of soil are reduced effectively.
關鍵字(中) ★ 永久沉陷
★ 減振器
★ 動態變位量
★ 落距
★ 加速度
關鍵字(英) ★ permanent settlement of pile
★ shock absorber
★ dynamic displacement
★ drop height
★ acceleration
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
照片目錄 VIII
表目錄 IX
圖目錄 X
符號說明 XV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 研究方法 2
1.4 論文內容 3
第二章 文獻回顧 5
2.1 基樁之基本理論 5
2.1.1 基樁之設計原則 5
2.1.2 基樁之極限支承力理論 7
2.1.3 基樁之沉陷 9
2.1.4 基樁的沉陷與支承力 10
2.1.5 樁-土介面之承載機制 13
2.1.6 振波在土壤中的傳遞 14
2.1.7 基樁受瞬間衝擊引致之振動 16
2.2 砂土之強度與變形 18
2.2.1砂土層之強度 18
2.2.2打樁過程中對樁周土壤之影響 19
2.2.3砂土受振之過程 21
2.3 基樁減振之相關研究 23
2.4 交通工具行駛造成之振動 26
2.5 消能元件之力學特性 27
2.6 相關規範容許之沉陷量 29
2.7 基樁發生沉陷之案例 30
2.7.1高屏大橋破壞案例 31
2.7.2雙園大橋破壞案例 31
2.7.3橋墩破壞原因 32
第三章 試驗儀器與方法 56
3.1 試驗規劃 56
3.2 試驗儀器與配置 57
3.2.1 LVDT校正 60
3.2.2液壓減振器 61
3.2.3設備配置 63
3.3 未改良模型樁 63
3.3.1 最大乾單位重試驗 65
3.3.2 最小乾單位重試驗 66
3.3.3 霣降法的標定試驗 67
3.3.4 霣降法 68
3.3.5 乾搗法 69
3.3.6落錘之衝擊加速度 69
3.4 改良模型樁 70
第四章 試驗分析與結果 85
4.1 未改良模型樁之振波傳遞與沉陷特性 86
4.1.1未改良模型樁之振波傳遞 86
4.1.2未改良模型樁之沉陷 88
4.1.3落錘之衝擊加速度 89
4.2 改良樁之振波傳遞與沉陷特性 90
4.2.1改良樁之振波傳遞 90
4.2.2改良樁之沉陷 91
4.2.3減振器之最大動態變位量 92
4.2.4減振器對變位量的改良成效 96
4.2.5減振器對振波的改良成效 99
第五章 結論與建議 115
5.1 結論 115
5.2 建議 116
參考文獻 117
附錄 124
參考文獻 1. 土質工學會,土質試驗法,日本土質工學會,第76-78頁,第172-188頁(1976)。
2. 公路橋梁設計規範,交通部公路總局,台北(2011)。
3. 古翰,「基樁減振器空氣填充度之減振特性與變形特性」,碩士論文,國立中央大學土木工程研究所,中壢(2011)。
4. 朱聖浩、王永明,「高鐵行經南科引致振動問題之減振可能方案評估」,國家地震工程研究中心 (2001)。
5. 林思銘,「基樁之減振改良研究」,碩士論文,國立中央大學土木工程研究所,中壢(2010)。
6. 林筠原,「減振基樁之瞬間變形與減振效果」,碩士論文,國立中央大學土木工程研究所,中壢(2009)。
7. 林筠原,「減振基樁之瞬間變形與減振效果」,碩士論文,國立中央大學土木工程研究所,中壢(2009)。
8. 建築物基礎構造設計規範,內政部營建署,台北(2012)。
9. 施國欽,大地工程學(二)土壤力學篇,文笙書局,台北(2011)。
10. 倪勝火、莊明仁、鐘啟泰,「台南科學園區背景及相關振源量測與分析」,第20屆中日工程技術研討會,公共工程組(10-2),高速鐵路行車引致軌道振動之問題論文集,第113-129頁(1999)。
11. 張國鎮、黃正興、張晴茂、李森枬,結構消能減震控制及隔震設計,全華書局,台北(2008)。
12. 陳斗生,「樁基礎之沉陷問題淺論」,地工技術,第101卷,第67-78頁(2004)。
13. 陳四川,「高屏大橋落橋事件之主誘因探討分析」,集水區土砂災害防治與資料庫技術應用推廣研討會(2000)。
14. 陳怡云,「場鑄基樁軸向承載行為及性能設計應用之研究」,碩士論文,國立臺灣科技大學營建工程系,台北(2012)。
15. 陳賜賢,「河川橋樑破壞原因探討-以莫拉克颱風雙園大橋為例」,水利會訊,第14卷,第11-28頁(2011)。
16. 曾乙哲,「複合勁度減振彈簧對砂土中模型樁動態性質之影響」,碩士論文,國立中央大學土木工程研究所,中壢(2006)。
17. 游以民,「減振基樁與樁周土壤之振波傳遞行為」,碩士論文,國立中央大學土木工程研究所,中壢(2005)。
18. 黃永智,「打樁對粉質砂土密度之影響」,碩士論文,國立交通大學土木工程系,新竹(2002)。
19. 廖文彬,「由模型樁試驗探討砂土層中軸向基樁摩擦行為」,碩士論文,國立臺灣科技大學營建工程系,台北(1999)。
20. 歐韋麟,「砂土中減振模型基樁之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢(2007)。
21. 蔡瑋育,「高鐵列車行經南科園區引致環境振動之分析」,碩士論文,國立成功大學土木工程研究所,台南(2009)。
22. 鐵路橋梁設計規範,交通部臺灣鐵路管理局,台北(2004)。
23. 鹽田正純,「地盤內の振動傳搬特性(<小特集>建築分野における固体音制御への流れ)」,日本音響學會誌,第五十卷,第四期,第325-331 頁(1994)。
24. Athanasopoulos, G.A., Pelekis, P.C. and Anagnostopoulos, G.A., “Effect of soil stiffness in the attenuation of Rayleigh-wave motions from field measurements,” Soil Dynamics and Earthquake Engineering, Vol. 19, No.4, pp.277-288 (2000).
25. Attewell, P.B., and Farmer, I.W., “Attenuation of ground vibrations from pile driving,” Ground Engineering, Vol.6, No.4, pp.9-26 (1973).
26. Chehab, A.G., and Ei Naggar, M.H., “Design of efficient base isolation for hammers and presses,” Soil Dynamics and Earthquake Engineering, Vol. 23, No. 2, pp. 127-141 (2003).
27. Coyle, H.M., and Reese, L.C., “Load transfer for axially loaded piles in clay,” Journal of the soil Mechanics and Foundation Division, Vol. 92, No. 2, pp. 1-26 (1966).
28. Coyle, H.M., and Sulaiman, I.H., “Skin Friction for Steel Piles in Sand,” Journal of Soil Mechanics and Foundation Division, Vol. 93, No. 6, pp. 261-278 ( 1967).
29. Das, B.M., Principles of Foundation Engineering, 8 Edition Book, Cengage learning, USA, pp. 641 (2010).
30. Ewing, W.M., Jardetzky, W. S. and Press, P., “Elastic Waves in Layered Media, ” McGraw-Hill, New York, pp.380(1957).
31. Kim, D.S., and Lee, J.S., “Propagation and attenuation characteristics of various ground vibrations,” Soil Dynamics and Earthquake Engineering, Vol. 19, pp. 115-126 (2000).
32. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall International Series in civil Engineering Mechanics, Upper Saddle River, New Jersey, pp. 174-180 (1996).
33. Li, Y., and Qiang, S., “Dynamics of Wind-Rail Vehicle-Bridge Systems,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 93, Issue. 6, pp. 483-507 (2005).
34. Marcuson, W.F., and Bieganousky, W.A., “SPT and Relative Density in Coarse Sands,” Journal of Geotechnical Engineering Division, Vol. 103, No. 11, pp. 1295-1309 (1977).
35. Meyerhof, G.G., “Discussion on Research on Determining the Density of Sands by Spoon Penetration Testing,” Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, vol 3, pp. 100 (1957).
36. Nowak, E.R., Knight, J.B., Povinelli, M.L., Jaeger, H.M., and Nagel, S.R., “Reversibility and irreversibility in the packing of vibrated granular material,” Powder Technology, Vol. 94, pp. 79-83 (1997).
37. O’Rourke, T D. and Kulhawy, F H., “Observations on Load Tests on Drilled Shafts,” Drilled Piers and Caissons II, New York, pp. 113-128(1985).
38. Parry, R. H., and Swain, C. W., “ Effective Stress Method of Calculating Skin Friction on Driven Piles in Soft Clay,” Ground Engineering, Vol. 4, pp. 24-26 (1977).
39. Poulos, H.G., and Davis, E.H., Pile Foundation Analysis and Design, Wiley, New York, pp. 125 (1980).
40. Randolph, M. F. and Wroth, C. P., “Application of the Failure State in Undrained Simple Shear to the Shaft Capacity of Driven Piles,” Geotechnique, Vol. 31, No. 1, pp. 143-157 (1981).
41. Randolph, M.F., and Wroth, C.P., “Analysis of deformation of vertically loaded piles,” Journal of the Geotechnical Engineering Division, Vol. 104, No. 12, pp. 1465-1488(1978).
42. Richart, D. W., “Dynamic Effect of Pile Installations on Adjacent Structures,” NCHRP Synthesis Report 253, Washington, USA (1997).
43. Seed, H.B., and Reese, L.C., “The action of soft clay along friction piles,” Transaction of ASCE, Vol. 122, No. 2882, pp. 731-764 (1957).
44. Theissen, J. R. and Wood, W. C., “Vibration in Structures Adjacent to Pile Driving, ” Dames and Moore Engineering, Bulletin, No.60, pp.4-21 (1982).
45. Tomlinson, M.J., “Some Effects of Pile Driving on Skin Friction,” Proceedings of the Conference on Behavior of Piles, London, England,
pp. 107-114 (1971).
46. Verhas, H.P., “Prediction of the Propagation of Train-induced Ground Vibration,” Journal of Sound and Vibration, Vol. 66(3), pp. 371-376 (1979).
47. Vesic, A. S., Design of pile foundation, Synthesis of Highway Practice 42, National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington, D.C(1977).
48. Wiss, J.F., “Construction Vibrations: State-of-the-Art,” Journal of Geotechnical Engineering Division, ASCE, Vol. 107, No. GT2(1981).
49. Woods, R. D., “Screening of Surface Waves in Soils, ” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.94, No.SM4, pp.951-979 (1968).
50. Woods, R.D. and Jedele, L.P., “Energy Attenuation from Construction Vibrations,” Vibration problems in geotechnical engineering, pp.229-246 (1985).
51. Xia, H., Zhang, N., and Cao, Y.M., “Experimental study of train-induced vibrations of environments and buildings,” Journal of Sound and Vibration, Vol. 280, No. 3-5, pp. 1017-1029 (2005).
指導教授 張惠文(Huei-Wen Chang) 審核日期 2013-10-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明