博碩士論文 100521057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.226.226.221
姓名 江志烽(Chih-feng Chiang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 光子晶體共振腔陣列之光學特性與模態分析
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來光子晶體共振腔由於具有極小元件體積、高Purcell效應且高結構調變性,可望被用在光通訊或單光子發射器等應用上。但光子晶體應用於光通訊及光學電路上,勢必要提高其輸出功率,而光子晶體陣列可有效的提高輸出功率,其中光子晶體陣列的耦合效應造成的共振模態變化則是影響輸出功率的一大因素。本研究採用具有極低模態體積、高Purcell效應及較少共振模態的quasi-L2光子晶體共振腔分析耦合效應對共振模態的影響,可更進一步調變多重共振腔及共振腔陣列的排列角度及距離,探討共振腔間的交互作用及共振模態的變化,可望作為光通訊或光學電路的光源。
根據模擬結果,雙重共振腔因耦合效應會產生兩個耦合共振模態,分別為電場同相震盪及反向震盪的模態,由於模態消散波以30∘方向由共振腔中心往外傳遞,因此30∘方向的耦合效應不隨共振腔間距增加而急遽減弱。三重共振腔因耦合效應會產生三個共振模態,若共振腔以不同角度排列,則只能觀察到耦合效應最強兩共振腔的耦合共振模態,較弱的耦合效應則會被抑制,若共振腔以相同角度排列,則三個共振腔皆會相互耦合共振。而共振腔陣列則分為0∘和90∘組成的矩形陣列及30∘組成的菱形陣列,矩形陣列只有耦合效應最強的兩共振腔會相互耦合,但菱形陣列則是四個共振腔皆會相互耦合共振。藉由動量空間分析,菱形陣列的垂直方向侷限能力較佳。菱形陣列除了可使共振腔間達到較穩定的耦合效應,控制所有共振腔的震盪相位以達到同相位共振,且亦能保有良好的侷限能力及Purcell效應。
實驗上本研究觀察到不同幾何排列的雙重共振腔模態分裂量趨勢與模擬吻合,且30∘方向的耦合效應隨共振腔間距增加仍可觀察到耦合效應。由雙重共振腔的模擬結果可驗證共振腔的耦合效應與模擬吻合,因此我們可藉由調變共振腔的排列以改變共振腔間的耦合效應及共振模態。而共振腔陣列的模態分佈與模擬吻合,因此可預期共振腔間的耦合效應與模擬推測相同。共振腔陣列應以30∘方向排列使所有共振腔皆耦合共振,可藉由耦合效應控制所有共振腔皆以同相位共振,且可操作在高輸出功率的模態,此研究結果可提供光子晶體陣列幾何結構的設計參考。
摘要(英) In recent years, photonic crystal (PhC) nanocavities have inspired great interest in on-chip interconnection or single photon source because of small mode volume, high Purcell effect, low threshold power, and high structure controllability. However, the low output power of PhC nanocavity limits the application for fiber communication, and the PhC array has been proposed to overcome this bottleneck. Moreover, the coupling effect is an important factor for array output power. In this research, the effects of cavity separation and permutation angle on coupling effect and resonant modes of quasi-L2 cavity were investigated.
According to simulation results, the fundamental mode would split into bonding mode and anti-bonding mode in double cavity. The mode splitting of 30o direction coupling is less dependent on cavity separation, because the evanescent wave of fundamental mode propagates along 30o direction. In triple cavity cases, the light would be confined at the strongest coupling cavities. As the cavity arranged at same permutation angle, all cavities would couple to each other. The PhC array separates from square array and rhombus array. In the square array, light would only be confined in the strongest cavities. In the rhombus array, all cavities would couple to each other. According to momentum analysis, the rhombus array has better vertical confinement than square array. So the rhombus array could achieve strong coupling between cavities and keep good confinement.
According to experimental results, we observed the mode splitting fits with simulation results. As increasing cavity separation, we still could observe mode splitting at 30o coupling direction. And the PhC array mode splitting measurement results also fits with simulation result. So the coupling effect is fits with simulation analysis. The best permutation of PhC nanocavity array is 30o direction, which could keep all cavities coupling, in-phase resonating, and high output power mode operation. These results could provide a design standard of PhC array geometry structure.
關鍵字(中) ★ 光子晶體
★ 耦合效應
★ 陣列
★ 共振腔
關鍵字(英)
論文目次 目錄
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 光子晶體簡介 1
1-2 研究動機與背景 3
第二章 模擬理論及基礎 6
2-1 平面波展開法 (Plane-Wave-Expansion method, PWE) 6
2-2 有限時域差分法 (Finite-Difference Time-Domain method, FDTD) 8
2-3 耦合模態理論 11
2-4 動量守恆定理 13
第三章 模擬結果與分析 15
3-1 模態分析 16
3-1-1 單一共振腔 16
3-1-2 雙重共振腔 18
3-1-3 三重共振腔 21
3-1-4 共振腔陣列 33
3-2 動量分析 37
3-3 結論 41
第四章 光子晶體製作與量測分析 42
4-1 光子晶體製作 42
4-2 反應式離子蝕刻測試 45
4-3 量測系統簡介 48
4-4 單一及雙重共振腔量測及分析 50
4-5 共振腔陣列量測及分析 57
4-6 結論 60
第五章 結論與未來展望 61
參考文獻 62
附錄 64
參考文獻 [1] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys Rev Lett, 58, 2059 (1987).
[2] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys Rev Lett, 58, 2486 (1987).
[3] 曾彥鈞, "高品質因子與低模態體積光子晶體微共振腔之設計與製作 " 中央大學碩士論文(2005).
[4] O. Painter, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science, 284, 1819 (1999).
[5] K. Okamoto, et al., "Near-field scanning optical microscopy of photonic crystal nanocavities," Applied Physics Letters, 82, 1676 (2003).
[6] A. Adibi, et al., "Photonic crystal microcavities for cavity quantum electrodynamics," 4655, 215 (2002).
[7] M. Lončar, et al., "Low-threshold photonic crystal laser," Applied Physics Letters, 81, 2680 (2002).
[8] J. Vučković, et al., "Enhanced single-photon emission from a quantum dot in a micropost microcavity," Applied Physics Letters, 82, 3596 (2003).
[9] S. Noda, et al., "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science, 293, 1123 (2001).
[10] C. Monat, et al., "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Applied Physics Letters, 81, 5102 (2002).
[11] L. Lu, et al., "120μW peak output power from edge-emitting photonic crystal double-heterostructure nanocavity lasers," Applied Physics Letters, 94, 111101 (2009).
[12] H. Altug, et al., "Photonic crystal nanocavity array laser," Opt Express, 13, 8819 (2005).
[13] Y. Kane, "Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, 14, 302 (1966).
[14] M. Bayindir, et al., "Tight-binding description of the coupled defect modes in three-dimensional photonic crystals," Phys Rev Lett, 84, 2140 (2000).
[15] K. Srinivasan, et al., "Momentum space design of high-Q photonic crystal optical cavities," Opt Express, 10, 670 (2002).
[16] 李嘉祥, "低臨界功率二維光子晶體雷射," 中央大學碩士論文 (2006).
[17] K. A. Atlasov, et al., "Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities," Opt Express, 16, 16255 (2008).
[18] S. Declair, et al., "Numerical analysis of coupled photonic crystal cavities," Photonics and Nanostructures-Fundamentals and Applications, 9, 345 (2011).
[19] A. R. Chalcraft, et al., "Mode structure of coupled L3 photonic crystal cavities," Opt Express, 19, 5670 (2011).
指導教授 綦振瀛(Jen-inn Chyi) 審核日期 2013-12-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明