博碩士論文 100521111 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.145.77.195
姓名 李哲誠(Che-Chen Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高效率功率放大器與振盪器研製
(Design of High Efficiency Power Amplifiers and Oscillators)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要討論為應用於射頻微波及毫米波高功率高效率之原件設計,使用橫向擴散金氧半場效應電晶體(LDMOS)元件及互補式金屬氧化半導體(CMOS)製程實現。首先,以傳統E類功率放大器為基礎,搭配阻抗補償法,利用Freescale公司所製造的LDMOS電晶體,設計出多種高功率E類寬頻放大器和注入鎖定式振盪器,並且達成寬頻、高效率及高功率輸出目標。
第三章提出一個應用於Q頻段的高效率疊接壓控振盪器(VCO),使用台積電90 nm LP CMOS製程。為了使壓控振盪器有高功率以及高效率的輸出,因此使用疊接架構及π型迴授網路的設計,量測輸出功率和效率分別達到10.4 dBm和16.1%,振盪頻率可從43.8至49.1 GHz。並且使用了Q值增強架構來改善相位雜訊的表現,使相位雜訊在1 MHz頻率偏移時為-104.63 dBc/Hz。
第四章為一個應用於V頻段的鎖相迴路,使用台積電 90 nm LP CMOS製程實現,並根據第三章設計一個差動疊接壓控振盪器。為了確保疊接壓控振盪器為差動輸出,因此可將壓控振盪器拆成等效奇模態電路和偶模態電路,其奇模態電路必須產生振盪,而偶模態電路則不會。接著藉由鎖相迴路及低抖動的參考頻率,可降低差動疊接壓控振盪器的抖動(jitter)以及相位雜訊。量測相位雜訊在1 MHz頻率偏移時為-86.5 dBc/Hz,其方均根(rms)抖動為307 fs。鎖定頻率可能59.6至60 GHz,輸出功率和效率分別達到7.6 dBm和2.2%。
最後,在第五章總結此篇論文的研究成果。
摘要(英) This thesis discusses design of high power and high efficiency power devices for radio frequency, microwave and millimeter-wave (MMW) applications. The circuits are designed using laterally diffused metal oxide semiconductor (LDMOS) transistors and complementary metal oxide semiconductor (CMOS) process. First, based on the conventional class-E topology with reactance compensation technique, a few broadband power amplifiers and injection-locked oscillators are presented, using Freescale LDMOS transistors. The proposed circuits feature broadband, high efficiency and high power.
A Q-band high efficiency cascode voltage controlled oscillator (VCO) using TSMC 90 nm LP CMOS process is presented in Chapter 3. To achieve both high power and high efficiency output, the cascode topology with π-feedback network is employed in the design. The proposed VCO exhibits a maximum output power of 10.4 dBm, and a maximum efficiency of 16.1%. The tuning frequency is from 43.8 to 49.1 GHz. Also the Q-enhancement circuit is introduced to improve the phase noise performance. The phase noise is -104.63 dBc/Hz at 1-MHz offset.
A V-band phase locked-loop (PLL) using TSMC LP 90 nm CMOS process is presented in Chapter 4. Based on the cascode VCO topology, an innovative differential cascode VCO is proposed for the V-band PLL. To ensure the differential operation for the cascode VCO, the even- and odd-mode analysis is adopted in the circuit design. Moreover, the output phase noise and jitter of the differential VCO can be significantly reduced using the PLL with the low phase noise reference. The measured output power is higher than 7 dBm, over the bandwidth with a dc-to-RF efficiency of 2.2%. The phase noise is -86.5 dBc/Hz at 1 MHz offset with a rms jitter of 307 fs.
Finally, the conclusion is summarized in Chapter 5.
關鍵字(中) ★ 效率
★ 功率
★ 放大器
★ 振盪器
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VI
表目錄 XIV
第一章 緒論 1
1.1 研究動機與背景 1
1.2 相關研究與發展 2
1.3 貢獻 3
1.4 論文架構 4
第二章 高功率E類寬頻放大器 5
2.1 簡介 5
2.2 寬頻E類功率放大器設計 5
2.3 高功率E類放大器 10
2.4 高功率注入式E類放大器 24
2.5 結論 44
第三章 應用於Q頻段高功率壓控振盪器 46
3.1 簡介 46
3.2 電路架構設計與分析 47
3.3 電路模擬與量測 61
3.4 結論 68
第四章 差動疊接壓控振盪器應用於V頻段鎖相迴路 69
4.1 簡介 69
4.2 電路架構分析與結果 70
4.3 電路模擬與量測 91
4.4 結論 109
第五章 結論 112
參考文獻 114
參考文獻 [1] A. Wood, C. Dragon, and W. Burger, “High performance silicon LDMOS technology for 2 GHz RF power amplifier applications,” in Int. Electron Device Meeting Tech. Dig., 1996, pp. 87–90.
[2] H. F. F. Jos, “Novel LDMOS structure for 2 GHz high power basestation application,” in Eur. Microw. Conf., 1998, pp. 739–744.
[3] H. Brech, W. Brakensiek, D. Burdeaux, W. Burger, C. Dragon, G. Formicone, B. Pryor, and D. Rice, “Record efficiency and gain at 2.1 GHz of high power RF transistors for cellular and 3G base stations,” in Int. Electron Device Meeting Tech. Dig., 2003, pp. 359–362.
[4] F. van Rijs and S. J. C. H. Theeuwen, “Efficiency improvement of LDMOS transistors for base stations: Towards the theoretical limit,” in Int. Electron Device Meeting Tech. Dig., 2006, pp. 205–208.
[5] D. Vye, L. Pelletier, S. Theeuwen, D. Aichele, R. Crampton, R. Pengelly, and B. Battaglia, “The new power brokers: High voltage RF devices,” Microw. J., vol. 7, pp. 22–40, Jun. 2009.
[6] K. Werner and S. Theeuwen, “RF driven plasma lighting—The next revolution in light sources are powered by solid state RF technology,” Microw. J., vol. 12, pp. 68–74, Dec. 2010.
[7] F. van Rijs, “Status and trends of silicon LDMOS base station PA technologies to go beyond 2.5 GHz applications,” in RadioWireless Symp., 2008, pp. 69–72.
[8] S. J. C. H. Theeuwen and H.Mollee, “ -band radar LDMOS transistors,” in Proc. 4th Eur. Microw. Integr. Circuits Conf., 2009, pp. 53–56,
[9] J. Kang, A. Hajimiri, and B. Kim, “A single-chip linear CMOS power amplifier for 2.4 GHz WLAN,” in IEEE Int. Solid-State Circuits Conf. (ISSCC 2006) Dig. Tech. Papers, San Francisco, CA, pp. 761–769, Feb. 2006.
[10] I. Aoki, S. Kee, D. Rutledge, and Ali Hajimiri, “A fully-integrated 1.8-V, 2.8-W, 1.9-GHz, CMOS power amplifier,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig. Papers, pp. 199–202, Jun. 2003.
[11] G. Liu, T.-J. King, and A. M. Niknejad, “A 1.2 V, 2.4 GHz fully integrated linear CMOS power amplifier with efficiency enhancement,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC 2006), pp. 141–144, Sep. 2006.
[12] J. Ebert and M. Kazimierczuk, “Class E high-efficiency tuned power oscillator,” IEEE J. Solid-State Circuits, vol. SSC-16, no. 2, pp. 62–66, Apr. 1981.
[13] D. V. Chernov, M. K. Kazimierczuk, and V. G. Krizhanovski, “Class-E MOSFET low-voltage power oscillator,” in Proc. IEEE Int. Circuits Syst. Symp., Phoenix, AZ, vol. 5, pp. 509–512, May 2002.
[14] E. W. Bryerton, W. A. Shiroma, and Z. B. Popovic´, “A 5-GHz highefficiency class-E oscillator,” IEEE Microw. Guided Wave Lett., vol. 6, no. 12, pp. 441–443, Dec. 1996.
[15] M. Prigent, M. Camiade, G. Pataut, D. Reffet, J. M. Nebus, and J. Obregon, “High efficiency free running class F oscillator,” in IEEE MTT-S Int. Microw. Symp. Dig., Orlando, FL, pp. 1317–1320, May 1995.
[16] A. Gitsevich, D. Kirkpatrick, and L. Dymond, Jr., “Solid-state high power RF oscillator,” in IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, pp. 1423–1426, May 2001.
[17] M.-Q. Lee, S.-J. Yi, S. Nam, Y. Kwon, and K.-W. Yeom, “High-efficiency harmonic loaded oscillator with low bias using a nonlinear design approach,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1670–1679, Sep. 1999.
[18] S. V. Hoeye, F. Ramirez, and A. Suarez, “Nonlinear optimization tools for the design of high-efficiency microwave oscillators,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp. 189–191, May 2004.
[19] H.-S. Oh, T. Song, E. Yoon, and C.-K. Kim, “A power-efficient injection- locked class-E power amplifier for wireless sensor network,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 4, pp. 173–175, Apr. 2006.
[20] M. K. Kazimierczuk, V. G. Krizhanovski, J. V. Rassokhina, and D. V. Chernov, “Injection-locked class-E oscillator,” IEEE Trans.Circuits Syst., vol. 53, no. 6, pp. 1214–1222, Jun. 2006.
[21] N. H. W. Fong, J. Plouchart, N. Zadmer, D. Liu, L. F. Wagner, C.Plett, and N. G. Tarr, “Design of wide-band CMOS VCO for multiband wireless LAN applications,” IEEE J. Solid-State Circuits, vol. 38, pp. 1333–1341, Aug. 2003.
[22] A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A 1.8-GHz LC VCO with 1.3 GHz tuning range and digital amplitude calibration,” IEEE J. Solid-State Circuits, vol. 40, pp. 909–917, Apr. 2005.
[23] J. Kim, J. Shin, S. Kim, and H. Shin, “A wide-band CMOS LC VCO with linearized coarse tuning characteristic,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, pp. 399–403, May 2008.
[24] Sheng-Lyang Jang, Chien-Feng Lee, “A K-band differential Colpitts cross-coupled VCO in 0.13 um CMOS,” Solid-State Electronics, vol. 53, pp. 931–934, Sept. 2009.
[25] Hong-Yeh Chang, Yi-Shou Wu, and Yu-Chi Wang, “A 38% tuning bandwidth low phase noise differential voltage controlled oscillator using a 0.5 um E/D-PHEMT process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 07, pp. 467-469, July 2009.
[26] Choong-Yul Cha, Member, and Sang-Gug Lee, “A complementary Colpitts oscillator in CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 53, no. 03, pp. 881-887, March 2005.
[27] Venumadhav Bhagavatula, and Jacques C. Rudell, “Analysis and design of a transformer-feedbackbased wideband receiver,” IEEE Microwave and Wireless Components Letters, vol. 61, no. 03, pp. 1347-1358, March 2013.
[28] Hui Zheng and Howard C. Luong, “Ultra-low-voltage 20-GHz frequency dividers using transformer feedback in 0.18-um CMOS Process,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2293-2302, Oct. 2008.
[29] K. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
[30] N. A. Sokal and A. D. Sokal, “Class E-a new class of high efficiency tuned single ended switching power amplifiers, ” IEEE Journal of Solid-Stae Circuits, vol.10, no. 3, pp. 168-176, Jun 1975.
[31] Andrei Grebennikov, “High-efficiency broadband parallel-circuit class E RF power amplifier with reactance-compensation technique,” IEEE Trans. Microwave Theory and Techniques, vol. 56, no. 3, March 2008.
[32] Choong-Ki Kim, “A power-efficient injection-locked class-E power amplifier for wireless sensor network,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 4, April 2006.
[33] Sanggeun Jeon, Almudena Suarez, and David B. Rutledge, “Nonlinear design technique for high-power switching- mode oscillators,” IEEE Trans. Microwave Theory and Techniques, vol. 54, pp. 3630-3640, October 2006.
[34] 李文賓,高功率高效率振盪器研製,國立中央大學電機工程研究所碩士論文,民國100年7月。
[35] J.He and D. Ren, “An LDMOS class E power amplifier designed by source/load pull technique,” IEEE International Conference on Communication Circuits and Systems, pp.742-745, July 2009.
[36] F. J. O. Gonzalez, “High power wideband class E power amplifier,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 10, pp. 569-572, Oct. 2010.
[37] F. H. Raab, “Broadband class E power amplifier for HF and VHF,” IEEE MTT-S International Microwave Symposium, pp. 902-905, June 2006.
[38] 葉彥良,應用於微波及毫米波鎖相迴路之金氧半場效電晶體注入鎖定振盪器研究,國立中央大學電機工程研究所博士論文,民國102年6月。
[39] Bonghyuk Park, “A 12-GHz fully integrated cascode CMOS LC VCO with Q-enhancement circuit,” IEEE Microwave and Wireless Component Letters, vol. 18, no. 2, pp. 133-135, Feb. 2008,.
[40] S. Asgaran and M. J. Deen, “A novel gain boosting technique for design of low power narrow-band RF CMOS LNAs,” in Proc. 2nd Annu. IEEE Northeast Circuits Syst. Workshop, pp. 293–296, Feb. 2004,.
[41] Tang-Nian Luo et al., “A 1-V CMOS VCO For 60-GHz Applications,” Asia Pacific Microwave Conf, Dec. 2005
[42] H. Hsieh, Y. Chen, L. Lu, “A millimeter-wave CMOS LC-tank VCO with an admittance-transforming technique”, IEEE Trans. Microwave Theory Tech., pp. 1854–1861, Dec 2007.
[43] Ki-Jin Kim , “mm-wave CMOS Colpitts VCO & frequency divider for the 60GHz WPAN ” IEEE Communications International Conference, pp. 358-361, Dec 2009.
[44] Song, Jae-hoon , “Q-band VCO and injection-locked buffer for 77-GHz automotive radar system in 0.13-µm CMOS,” Synthetic Aperture Radar (APSAR), pp. 1 – 3, Nov 2011.
[45] Cheema, H.M., Mahmoudi, R., Sanduleanu, M.A.T., van Roermund, A., “A 44.5 GHz differentially tuned VCO in 65 nm bulk CMOS with 8% tuning range”, IEEE Radio Frequency Integrated Circuits Symp., pp. 649– 652, 2008.
[46] Kraemer, M., “A High Efficiency Differential 60 GHz VCO in a 65 nm CMOS Technology for WSN Applications,” IEEE Microwave and Wireless Component Letters, vol. 21, no. 6, pp. 314 – 316, June 2011.
[47] F. Ellinger et al., “60 GHz VCO with wideband tuning range fabricated on VLSI SOI CMOS technology,” in Proc. IEEE IMS’04, vol. 3, pp. 1329–1332, June 2004.
[48] K. Tang, S. Leung, N. Tieu, P. Schvan, and S. Voinigescu, “Frequency scaling and topology comparison of millimeter-wave CMOS VCOs,” in Proc. IEEE Compound Semicond. Integr. Circuit Symp., pp. 55–58, Nov. 2006.
[49] U. Singh, and M. M. Green, “High efficiency CML clock dividers in 0.13-um CMOS operating up to 38 GHz,” IEEE J. Solid-State Circuits, vol. 34 no. 7, pp. 962-970, July 1999.
[50] J. Lee, and B. Razavi, ”A 40-GHz frequency divider in 0.18-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 39 no. 4, pp. 594-601, Apr. 2004.
[51] H. R. Rategh, and T. H. Lee, ”Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813-821, Jun. 1999.
[52] “RF Power Field Effect Transistors,” Document Number: MRF6V2300N Rev. 5, Freescale Semiconductor Inc., June 2010
[53] B. Y Lin, and S-I Liu, ”A 132.6GHz phase-locked loop in 65nm digital CMOS,” IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 58, pp. 617-621, Oct. 2011.
[54] C. Lee and S.Luan Liu, “A 58-60.4GHz frequency synthesizer in 90nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 196-197, Feb. 2007.
[55] H. Hoshino, R. Tachibana, T. Mitomo, “A 60-GHz phase-locked loop with inductor-less prescaler in 90-nm CMOS ,” in Proc. Eur. Solid-State Circuits Conf., pp. 427–475, Sept. 2007.
[56] H.-K. Chen, T. Wang, and S.-S. Lu, “A millimeter-wave CMOS triple-band phase-locked loop with a multimode LC-based ILFD,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1327-1338, May 2011.
[57] C. Lee, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “A 50.8-53 GHz clock generator using a harmonic-locked PD in 0.13um CMOS,” IEEE Trans. Circuits Syst. Exp. Briefs, vol. 55, no. 5, pp. 404-408, May. 2008.
[58] K.-H. Tsai and S.-I. Liu, “A 62-66.1 GHz phase-locked loop in 0.13um CMOS technology ,” in IEEE Int. Symp. On VLSI Design, Automation and Test, pp. 113-116, Apr. 2008.
[59] J. Kim et al, “A 20-GHz phase-locked loop for 40-Gb/s serializing transmitter in 0.13-m CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 899–908, Apr. 2006.
[60] M. Meghelli et al., “A 0.18-m SiGe BiCMOS receiver and transmitter chipset for SONET OC-768 transmission systems,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2147–2154, Dec. 2003
[61] Hong-Yeh Chang, Yi Shou Wu, and Yu-Chi Wang, ”A 38% tuning bandwidth low phase noise differential voltage controlled oscillator using a 0.5 μm E/D-PHEMT process,” IEEE Microwave and Wireless Component Letters, vol. 19, no. 7, pp. 467-496, July 2009.
指導教授 張鴻埜 審核日期 2013-12-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明