博碩士論文 973202050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.145.130.31
姓名 吳尚謙(Shang-chien Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 加速鋰離子傳輸技術對鋼筋和混凝土性質影響及工程應用初探
(Accelerate Lithium Migration Technique on the rebar and the bond strength between rebar and concrete,investigate accelerate Lithium Migration Technique engineering application.)
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究
★ 經高溫製程產生含矽再生粒料之鹼質活性研究★ 改質人工粒料的應用策略基礎研究
★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究
★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究內容主要區分為四個研究子題:(1) 探討ALMT對鋼筋和混凝土性質的影響;(2) 分析ALMT阻抗劇增的原因,及研究抑制策略;(3) 評估試體長度對通電成效的影響;(4) 初步探討ALMT實務應用的可行性。
研究發現ALMT可稍增加混凝土的抗壓強度,和混凝土對鋼筋的握裹力。對以鋼筋作為陰極配合外加輔助陽極會造成鋼筋變脆,和增加在鋼筋周圍之Na+及K+濃度,可能惡化鋼筋周圍混凝土ASR的危害,但同時使用外加陰極和陽極鋼筋不接電時,ALMT對鋼筋的性質没有顯著的影響。ALMT應用時易發生系統阻抗劇增的現象,其原因是因為空氣中的CO2溶入陰極槽內形成CO32-,與混凝土內部之Ca2+互相結合,形成不溶解的碳酸鈣阻塞孔隙,因此有效的阻絕空氣溶入陰極槽內,定期更換陰極槽電解液,和在陰極槽內添加過量的氫氧化鈣以消耗溶入的CO2,均能有效防止系統阻抗劇增的現象發生。當採用不同試體長度之試體以定電流密度及定電壓進行控制電場時,以定電壓方式對離子傳輸成效較差。將來實務應用ALMT時,以陽離子均勻分佈的成效評估,用在混凝土表面外加平面型的電極,優於在混凝土內鑽洞置入棒狀的電極。
摘要(英) The scope of this research are: (1) investigate the influence of ALMT on the rebar and the bond strength between rebar and concrete; (2) ALMT system impedance to analyze the reasons, and research suppression strategy; (3) assessment of specimen length on the power effectiveness of the impact; (4) discussed ALMT feasibility of practical applications.
Test result showed ALMT increased compressive strength of concrete, and the bond strength of steel. If the rebar was used as cathode will cause additional secondary rebar brittle and the increase in the steel around the Na+ and K+ concentration around reinforced concrete ASR may worsen the harm. ALMT applications occurred to dramatic increase in system impedance, the reason is because the CO2 in the air integrated into the formation of CO32-, and concrete in the calcium-binding, forming insoluble calcium carbonate block pores, effectively block air integration into the cathode tank, periodic replacement of the cathode electrolyte tank, and add calcium hydroxide of excessive to consumption the CO2 in the cathode tank, effectively prevent the dramatic increase in the occurrence of system impedance. When the specimens with different lengths of the constant voltage and the constant current. Use constant voltage mode of ion transport less effective. Assess ALMT the effectiveness of cationic uniform, used in the concrete surface along with planar electrodes, is better than drilling holes in concrete of the electrode rod.
關鍵字(中) ★ 混凝土
★ ALMT
★ 電化學
★ 鹼-矽反應
關鍵字(英) ★ concrete
★ ALMT
★ electrochemical
★ ASR
論文目次 目錄
第一章 緒論.............................................1
1.1 研究動機............................................1
1.2 研究目的............................................1
1.3 研究內容............................................2
第二章 文獻回顧.........................................3
2.1 鹼質與粒料反應之種類與機理..........................3
2.1.1 鹼質與粒料反應種類................................3
2.1.2 鹼-矽反應之機理..................................5
2.1.3 鹼-矽反應的化學機制..............................7
2.2 鹼-矽反應的徵狀....................................8
2.2.1 外觀徵兆..........................................8
2.2.2 混凝土結構物內部徵狀.............................12
2.3 影響鹼-矽反應因素.................................14
2.3.1 粒料種類.........................................15
2.3.2 含鹼量...........................................17
2.3.3 粒徑大小.........................................17
2.3.4 水泥成分及水泥細度...............................18
2.3.5 水灰比與孔隙率...................................18
2.3.6 摻料.............................................19
2.3.7 暴露環境.........................................19
2.4 鹼-矽反應預防及維修方式...........................20
2.4.1 新拌混凝土預防方法...............................20
2.4.2 硬固混凝土之維修方式.............................22
2.5 鋰化合物...........................................22
2.5.1 鋰化合物抑制鹼-矽反應機理.......................23
2.5.2 鋰化合物應用於抑制ASR發展簡介....................23
2.6 其他電化學工法簡介.................................29
2.6.1 陰極防蝕工法.....................................29
2.6.2 電化學去鹽工法...................................30
2.6.3 電化學還鹼工法...................................30
2.7 電化學工法對混凝土的影響...........................31
2.7.1 增加混凝土發生AAR機率............................31
2.7.2 混凝土阻抗增加...................................31
2.7.3 通電對混凝土抗壓強度的影響.......................32
2.7.4 混凝土產生裂縫...................................32
2.7.5 鋼筋產生氫脆.....................................33
2.7.6 通電對鋼筋握裹力影響.............................33
2.7.7 通電造成混凝土溫度升高...........................34
第三章 試驗規劃........................................35
3.1 試驗流程與方法.....................................35
3.1.1 探討ALMT對鋼筋和混凝土性質的影響.................37
3.1.2 分析ALMT阻抗劇增原因,及研究抑制策略.............44
3.1.3 評估試體長度對通電成效的影響.....................53
3.1.4 初步探討ALMT實務應用的可行性.....................56
3.2 試驗材料及設備.....................................62
3.2.1 試驗材料.........................................62
3.2.1.1 粒料.........................................62
3.2.1.2 水泥.........................................63
3.2.1.3 拌合水.......................................65
3.2.1.4 化學藥劑.....................................65
3.2.1.5 披覆材料.....................................66
3.2.1.6 鋼筋.........................................67
3.2.2 試驗設備.........................................67
3.2.2.1 壓克力電解槽.................................67
3.2.2.2 空氣泵浦.....................................68
3.2.2.3 電極網及電極棒...............................68
3.2.2.4 握裹力試驗模具...............................68
3.2.2.5 電源供應器...................................70
3.2.2.6 定量吸管.....................................70
3.2.2.7 注射式過濾器.................................70
3.2.2.8 數據擷取器...................................71
3.2.2.9 水冷式鑽心機.................................71
3.2.2.10 離子層析儀(IC)...............................72
3.2.2.11 掃描式電子顯微鏡.............................73
3.2.2.12 X光繞射分析儀................................74
3.2.2.13 泛能試驗機...................................74
3.3 離子濃度檢測方法...................................74
3.3.1 離子溶液取得.....................................75
3.3.2 離子濃度檢測.....................................75
3.3.3 試體內離子分佈檢測...............................76
第四章 結果與討論......................................78
4.1 探討ALMT對鋼筋和混凝土性質的影響...................78
4.1.1 系統電場性質的變化...............................79
4.1.2 通電對鋼筋握裹力的影響...........................86
4.1.3 通電對鋼筋抗拉行為的影響.........................88
4.1.3.1 鋼筋降伏強度及抗拉強度........................90
4.1.3.2 鋼筋伸長率及斷面減縮率........................91
4.1.4 通電後試體內Li+、Na+及K+含量及分佈...............92
4.1.4.1 鋼筋通負電試體內離子含量及分佈................93
4.1.4.2 鋼筋不通電試體內離子含量及分佈................95
4.1.5 通電對混凝土抗壓強度的影響.......................97
4.1.6 目測觀察通電試體的變化..........................100
4.1.7 探討ALMT對鋼筋和混凝土性質的影響之小結..........102
4.2 分析ALMT阻抗劇增原因,及研究抑制策略..............103
4.2.1 阻抗劇增的原因及發生機理........................103
4.2.1.1 定量瓶法.....................................104
4.2.1.2 電化學法.....................................108
4.2.2 研究改善ALMT阻抗劇增的策略及阻抗劇增對離子傳輸的影響....................................................116
4.2.2.1 防止CO2溶入陰極槽電解液試驗..................119
4.2.2.2 防止陰極電解液內形成CO32-試驗................125
4.2.2.3 改變陰極槽電解液試驗.........................131
4.2.3 電化學法比較不同抑制阻抗劇增策略之成效........136
4.2.4 分析ALMT應用時阻抗劇增原因,及抑制策略之小結..139
4.3 評估試體長度對通電成效的影響......................141
4.3.1 不同試體長度之電流與電壓影響....................142
4.3.2 陰極槽內陽離子濃度變化..........................144
4.3.3 不同長度試體之試體內Li+、Na+、K+含量及分佈的影響149
4.3.4不同長度試體之試體內Li/(Na+K)莫耳比之影響........152
4.3.5 評估試體長度對通電成效的影響之小結..............155
4.4 初步探討ALMT實務應用的可行性......................157
4.4.1 鑽孔輔助電極方式................................158
4.4.1.1 鑽孔輔助電極之系統阻抗變化...................158
4.4.1.2 鑽孔輔助電極試驗之試體內離子含量及分佈.......160
4.4.2 平面輔助電極方式................................166
4.4.2.1 平面輔助電極之系統阻抗變化...................166
4.4.2.2 平面輔助電極之外觀變化.......................168
4.4.2.3 平面輔助電極試驗之試體內離子分佈.............169
4.4.3初步探討ALMT實務應用的可行性之小結.............172
第五章 結論與建議.....................................173
5.1 結論..............................................173
5.2 建議..............................................174
參考文獻..............................................175
參考文獻 參考文獻
[1].蘇銘鴻,「電滲法運用於抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所,碩士論文,中壢,2002。
[2].Gillott, J.E., “Alkali-aggregate reaction in concrete,” Engineering
Geology,Vol. 9, pp. 303–326, 1975.
[3].Fournier, B., and Bérubé, M.A., “Alkali-aggregate reaction in concrete: a review of basic concepts and engineering implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp. 167–191, 2000.
[4].Stanton, T.E., “Influence of cement and aggregate on concrete expansion”, Engineering News-Record, 124, p. 59, 1940.
[5].Swamy, R.N., “The alkali-silica reaction in concrete,” Van nostrand reinhold, New York, 1992.
[6].Swenson, E. G., A reaction aggregates undetected by ASTM tests, ASTM Bull.226, pp. 48-50, 1957.
[7].Hadley, D. W., “Alkali reactivity of dolomitic carbonate rocks”, Highway. Res. Rec., Vol. 45, pp. 1-17, 1964.
[8].Dent Glasser, L.S. and Kataoka, N., “The chemistry of alkali-aggregate reaction”, Cement and Concrete Research,” Vol. 11, pp. 1-9, 1981.
[9].楊世和,「台灣東部反應性骨材之探討及分析」,國立中央大學土木工程研究所,碩士論文,1997。
[10].李 釗、許書王、陳桂清,「由破裂之消波塊探討鹼骨材反應」,台灣省政府交通處港灣技術研究所港灣報導,1996。
[11].許書王,「台灣地區鹼質與粒料反應檢測方法評估研究」,國立中央大學土木研究所,博士論文,1999。
[12].廖肇昌,銷興臺,「混凝土骨材鹼性反應之特性及對鋼筋混凝土構件之影響:結構工程,第8卷1期,第25-40頁。
[13].MacNeil, S. G., Langley, W. S., and Soles, James A., “Alkali-reactive aggregates in Nova Scotia: CANMET studies of their distribution and control of the reactivity”, Cement & Concrete Composites, Vol.15, pp. 7-12, 1994.
[14].Hobbs, D.W., “Expansion of concrete due to alkali-silica reaction”, the structural engineer”, Cement, Concrete, and Aggregate, England, 1984.
[15].Ludmila, D. M., “Handbook of concrete aggregates”, Noyes Publications, Park Ridge, New Jersey, U.S.A., 1983.
[16].McCoy, W. J., “Effect of hydration on water solubility of ions in portland cement”, Martin Marietta Corp., U.S.A., pp. 35-46, 1978.
[17].Young, J.F., and Mindess, S., “Concrete”, Prentice, INC. Englewood Cliffs,New Jersey, p. 140-148.
[18].Lee, C., “Available alkalis in fly ash and their effects on alkali-aggregate reaction”, Ph. D. Dissertation, University of Iowa State, 1986.
[19].西林新藏,成功大學演講記錄,1993.
[20].Oberholster. R. E., and Davies, G., “An accelerated method for testing the potential alkali reactivity of siliceous aggregates”, Cement and Concrete Research, Vol. 16, pp. 181-189, 1986.
[21].Lenzner, D. and Luedwig V., “The alkali aggregate reaction with opaline sand stone from schleswig holstein”, Proc, 4thInt, Conf. On Effects of Alkalies in Cement and Concrete, pp.11-34, 1978.
[22].Bashar T. , Ghassan N. , “Using lithium nitrate and pozzolanic glass powder in concrete as ASR suppressors”, Cement & Concrete Composites,Vol. 30, pp. 497–505, 2008.
[23].McCoy, W.J. and Caldwell A.G., “New approach to inhibiting
alkali-aggregate expansion”, Journal of the American Concrete
Institute. Vol. 22, pp. 693-706 1951.
[24].Lawrence M. and Vivian H.E., “The reactions of various alkalis with silica”, Australian Journal of Applied Science, Vol. 12, pp. 96-103, 1961.
[25].Kishitani, K. et al., “Series of durability in concrete structures, alkali
aggregate reaction”, Gihodo Shuppan Co., Ltd, pp. 66-68, 1986.
[26].Ong, S., “Study of effects of LiOH, NaOH, and KOH on alkali silica
reaction”, M.S.C.E. thesis, School of Civil Engineering, Purdue University, 1990.
[27].Stark, D.C., “Lithium salt admixtures – an alternative method to prevent expanxive alkali-silica reactivity”, 9th International Conference on Alkali-Aggregate Reaction, London, pp.1017-1025, 1992.
[28].Bian Q. etc., “Preliminary study of effect of LINO2 on expansion of mortars subjected to alkali-silica reaction”, Cement and Concrete Research,Vol. 25, No. 8, pp. 1647-1654, 1995.
[29].Diamond S., “Unique response of LiNO3 as an alkali silica
reaction-preventive admixture”, Cement and Concrete Research Vol. 29, pp. 1271-1275, 1999.
[30].Durand B., “More results about the use of lithium salts and mineral
admixtures to inhibit ASR in concrete”, Proceedings of the 11th
International Conference on Alkali–Aggregate Reaction, Centre de
Recherche Interuniversitaire sur le Beton, Quebec, p. 623, 2002,
[31].Ekolu, S.O., Thomas, M.D.A. and Hooton, R.D., “Dual effectiveness of lithium salt in controlling both delayed ettringite formation and ASR in concretes”, Cement and Concrete Research, Vol 37, No 6, PP. 942-947, June 2007.
[32].Michael D.A., Thomas, Benoit F., Kevin J. F., Jason H. I., and Yadhira Resendez. , “The use of lithium to prevent or mitigate alkali -Silica reaction in concrete pavements and Structures”, FHWA–HRT -06-133, pp. 29–32 , 2008.
[33].リハビリ工法研究会,「http://www.rehabilitate.jp/?cn=100029」
[34].日本ASRリチウム工法協會,「http://www.asrli.jp/?cn=100002」
[35].Stokes D.B., “Development of a lithium-based material for decreasing
ASR-induced expansi on in hardened concrete”, 11th International
Conference on Alkali-Aggregate Reaction, Quebec, pp.1079-1087, 2000.
[36].陳登義,「以電化學技術抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所,碩士論文,中壢,1999。
[37].Whitmore D. and Abbott S., “Use of an applied electric field to drive lithium ions into alkali-silica reactive structures”, 11th International Conference on Alkali-Aggregate Reaction, Quebec, pp.1089-1098, 1992.
[38].林明峰,「利用電化學方法抑制AAR對鋼筋混凝土材料特性影響之研究」,國立中央大學土木工程研究所,碩士論文,中壢,2003。
[39].Kevin J. F., Michael D.A., Thomas B. F., Kimberly E.K., and Jason H. I. , “Interim recommendations for the use of lithium to mitigate or prevent alkali-silica reaction (ASR) ,”FHWA-HRT-06-073, pp.64,71–74, 2006.
[40].廖偉榕,「具 AAR 活性砂漿試體在不同單維電場強度作用之下離子傳輸行為研究」, 國立中央大學土木工程研究所,碩士論文,中壢,2008。
[41].劉慧如,「活性砂漿試體受單維電場作用下陽離子傳輸行為之研究」, 國立中央大學土木工程研究所,碩士論文,中壢,2009。
[42].「鋼筋混凝土構造物防蝕技術與應用研討會論文集」,交通部運輸研究所,1992。
[43].Bertolini, L., Carsana, M. and Redaelli, M.,” Conservation of historical reinforced concrete structures damaged by carbonation induced corrosion by means of electrochemical realkalisation” Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘‘G. Natta’’, via Mancinelli, 7, 20131 Milan, Italy Received 14 June 2007; accepted 7 January 2008.
[44].Natesaiyer, K. and Hober, K.C., “Investigation of electrical effects on
alkali-aggregate reaction”, Proceeding of the 7th International Conference on Alkali-Aggregate Reaction, Ottawa, Canada. pp. 466-471, 1986.
[45].Kuroda, T., Nishibayashi S., and Bian Q., “Study of alkali-aggregate
reactions in electrical fields”, Proceeding of the 10th International Conference on Alkali-Aggregate Reaction, Melbourne, Astralia, pp.884-891 1996.
[46].Sergi, G. and Page, C.L., “The effects of cathodic protection on alkali-silica reaction in reinforced concrete”, TRRL Contract Report, No. 310, pp. 1-53, 1992.
[47].Ali, M.G. and Rasheeduzzafar, “Cathodic protection current accelerates alkali-silica reaction”, ACI Materials Journal May-June. Vol. 90, pp247-252.
[48].Torii K. etc., “Influence of cathodic protection on cracking and expansion of the beams due to alkali-silica reaction”, Proceeding of the 10th International Conference on Alkali-Aggregate Reaction, Melbourne, Astralia, pp. 653-660, 1996.
[49].Page, C.L., “Interfacial effects of electrochemical protection methods applied to steel in chloride-containing concrete”, Rehabilitation of Concrete Structures Proceedings of International Conference, Held by RILEM MELBOURNE, pp. 179-187, 1992.
[50].陳清華,「混凝土結構物植筋補強之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢,2001。
[51].Jiang J. C., Weichung Y., and Ran H., “Degradation of the bond strength between rebar and concrete due to the impressed cathodic current”, Journal of Marine Science and Technology, Vol. 7, No. 2, pp. 89-93, 1999.
[52].陳桂清,「電化學技術應用於鹽害RC 結構物之去鹽成效與鋼筋腐蝕行為研究」,博士論文,國立中央大學土木工程研究所,中壢,1999。
[53].Shechter A., Glazer L., and Cheled S., “A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix,” PNAS Vol. 105 No. 20, 2008
指導教授 李釗(Chau Lee) 審核日期 2010-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明