以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:71 、訪客IP:3.128.201.207
姓名 洪若彬(Candera Wijaya) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 衛星影像之空間區域性增揚
(Spatial Local Contrast Enhancement of Satellite Images)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 影像增揚之主要目的為提高對比,強化顯示出影像原本較不易觀察的資訊。因此影像增揚在視覺應用上扮演很重要的角色,可產生較好品質的影像。一般而言,影像增揚採用單一函數關係來增揚整張影像之對比灰度直,但因影像中有許多需要不同增揚程度的物件,所以此方法無法得到最好的結果。所以僅使用單一函數關係增揚出良好的成果是非常難的一件事。本研究提出對比增揚演算法來改進衛星影像之視覺品質並且保存影像增揚前之自然特徵。本方法先根據分隔法將來源影像分割成很多區塊,再對每個區塊進行可調整性直方圖等化並且透過各區塊中心區域的像元距離給予權重來修正增揚後影像區塊之間邊緣所存在的很大的灰度差異。本研究提出使用自動化門檻值的可調整性直方圖等化,以指數函數為基礎,使用Shannon熵和可調整性直方圖等化之參數建立門檻值關係。區塊內的熵越大,使用的參數越小,反之亦然。實驗結果顯示,使用本研究方法可明顯提升特徵物件之視覺品質,並修正區塊之間的間隙及保存自然特徵。這些都是全區增揚方法無法辦到的事情。
摘要(英) The main purpose of image enhancement is to increase the contrast in order to bring out hidden details of an image. Therefore, the image enhancement generally is an important process to have a better image quality for visual applications. In the global approach, the enhancement methods generally use a single mapping function to enhance the whole image. However, a single enhancement mapping function can not improve image contrast satisfactorily since the contrast of an object is interfered by the whole image. Naturally, it is difficult to find a good mapping function to enhance the whole image. In this thesis, we proposed a new contrast enhancement technique which stretches the local contrast to improve the visibility of satellite images, while preserving its natural looks. The proposed method is based on segmentation of an input image that divided into small individual patches. Adjustable histogram equalization with dynamic threshold is applied for every single patch with the consideration of the gap problem appearing between patches. The threshold is based on an exponential function under the relationship between Shannon entropy index and adjustable histogram equalization weighting parameter. The larger entropy index on a segment, the smaller parameter value is used, and vice versa.
The results show that visibility improvement of specific objects is successfully enhanced using the proposed method. This thesis provided a new enhancement algorithm in enhancing contrast and characteristics of an image that could not be enhanced by global contrast enhancement or conventional method.
關鍵字(中) ★ 熵
★ 可調整性直方圖等化
★ 分隔法關鍵字(英) ★ adjustable histogram equalization
★ segmentation
★ entropy論文目次 Abstract i
摘要 ii
Acknowledgements iii
Contents iv
List of Figures vi
List of Tables viii
Chapter 1 - Introduction 1
1.1 Preview 1
1.2 Motivation 2
1.3 Thesis Organization 4
Chapter 2 - Related works 5
2.1 Linear Histogram Stretching 5
2.2 Gamma Transform 6
2.3 Histogram Equalization (HE) 7
2.4 Local Histogram Equalization 8
2.5 Adjustable Histogram Equalization 9
2.6 Image Quality assessment 10
2.6.1 Manual Assessment 11
2.6.2 Quantification Assessment 11
2.6.2.1 Shannon Entropy Index 11
2.6.2.2 Michelson Contrast Index 13
2.7 Review 14
Chapter 3 - Methodology 15
3.1 Segmentation 16
3.2 Adjustable Histogram Equalization 19
3.3 Smoothing 23
Chapter 4 - Study Area 26
4.1 Quickbird Satellite Image 27
4.2 IKONOS-2 Satellite Image 28
4.3 Geo-Eye-1 Satellite Image 29
4.4 FORMOSAT-2 Satellite Image 30
4.5 SPOT-5 Satellite Image 32
Chapter 5 - Experimental Results and Discussion 34
5.1 Experimental Results of QuickBird satellite image 35
5.2 Experimental Results of IKONOS-2 satellite image 43
5.3 Experimental Results of GeoEye-1 satellite image 51
5.4 Experimental Results of FORMOSAT-2 satellite image 59
5.5 Experimental Results of SPOT-5 satellite image 67
Chapter 6 - Conclusion 77
References 79
參考文獻 Adams, R. & Bischof, L., 1994. Seeded region growing, IEEE Transactions on Pattern Analysis and Machine Intelligence, 16 (6), pp. 641-647.
Arici, T., Dikbas, S. and Altunbasak, Y., 2009. A histogram modification framework and its application for image contrast enhancement, IEEE Transactions on image processing, 18 (9), pp. 1921-1935.
Gonzalez, R. C. and Woods, R. E., 1992. Digital image processing, Addison-Wesley Publishing Company, Inc.
Gonzalez, R. C. and Woods, R. E., 2001. Digital image processing (2nd ed.). New York: Prentice Hall.
Kim, D. H. and Cha, E. Y., 2009. Intensity surface stretching technique for contrast enhancement of digital photography, Multidim Syst Sign Process, 20, pp. 81–95.
Kim, J. Y., Kim, L. S. and Hwang, S. H., 2001. An advanced contrast enhancement using partially overlapped sub-block histogram equalization, IEEE Transactions on Circuits and Systems for Video Technology, 11 (4), pp. 475–484.
Kong, N. S. P. and Ibrahim, H., 2008. Color image enhancement using brightness preserving dynamic histogram equalization, IEEE Transactions on Consumer Electronics, 54 (4), pp. 1962-1968.
Peli, E., 1990. Contrast in complex images, Optical Society of America, 7 (11), pp. 2032-2040.
Shannon, E. C., 1948. A mathematical theory of communication. Bell SystemTechnical Journal, 27, pp. 379-423, 623-656.
Sheikh, H. R. and Bovik, A. C., 2006. Image information and visual quality. IEEE Transactions on Image Processing, 15(2), pp.430-444.
Stark, J. A., 2000. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 9(5), pp. 889-896.
Yoon, B. W. and Song, W. J., 2007 Image contrast enhancement based on the generalized histogram. Journal of Electronic Imaging, 16(3), pp. 033005-1-033005-8
http://www.digitalglobe.com/
http://www.wikipedia.org/
張宏宇,2008,「模糊分類法應用於衛星影像之對比增揚」,碩士論文,國立中央大學土木工程研究所。
指導教授 陳繼藩(Chi-Farn Chen) 審核日期 2010-7-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare