博碩士論文 93324002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.145.90.245
姓名 林鐘偉(Chung-wei Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 結合一奈米結構(nanofilament silicon , nSi)矽基材與表面化學改質之質譜晶片用以提升質譜效率之研究
(The study of sensitivity improvement of mass spectrometry by nanofilament silicon substrate (nSi) and surface chemical modification)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
傳統在複雜蛋白質的分離以及定序的分析技術中有著儀器設備昂貴,分析時間過長,分離條件限制較多,分離產物不純等等問題,而近年來質譜技術的進步,可改善這個問題。
質譜儀是偵測質荷比(mass to charge ration, m/z)來決定分析物分子量的技術,相較於其他的質譜分析有著基質(matrix)干擾與分析物帶有多電荷等問題,本實驗發展新一代高靈敏奈米層狀矽基材 (nanofilament Silicon , nSi)質譜分析晶片來改善這些問題。進一步本研究利用表面改質之方式將nSi質譜分析晶片分別處理成疏水性(hydrophobic)、親水性(hydrophilic)、正電性(cation exchange)、負電性(anion exchange)、固定化金屬親和性 (IMAC) 等不同表面特性的質譜分析晶片。如此 nSi 質譜分析晶片表面能對分析物做純化與分離,進而增加質譜分析之選擇性 (selectivity) 以及靈敏度 (sensitivity)。
從實驗中,質譜的分析數據以及表面的化學鑑定來看,本研究所建構之nSi質譜分析晶片:
1. 隨著蝕刻秒數之增加,奈米結構的表面變較粗糙,使得質譜訊號隨之提升,但卻有一定之極限。
2. 不同表面特性之晶片在經過化學分析電子儀(ESCA)分析後,得到其相對應之元素訊號(如:在疏水性晶片上所得到之碳訊號)比之未經過化學改質之晶片所得到之訊號都有增加。
3. 不同特性之胜肽在其相對應的表面所得之質譜測試訊號,比之未經過化學改質之晶片都有明顯之提升。
摘要(英) Abstract
Some problems exist in the conventional separation of complex protein mixtures and the sequence analysis technique. These problems include expensive equipment, extremely long analysis time, restrictive separation conditions, and impure separation results. Employing advanced mass spectrometry techniques improves these issues.
Mass spectrometry is a technology that determines the molecular weight of the analyte by detecting its mass-to-charge ratio. Compared to other mass spectrometry methods that has matrix interference and analyte with multiple charges. To develop the new nSi mass-analytical chip will improve these problems. This study utilizes surface modification to process the chip surface and forms different nSi mass-analytical chip, such as hydrophobic、hydrophilic、cation exchange、anion exchange、and metal affinity (IMAC). This approach enables analyte purification and separation, increasing the selectivity and sensitivity of mass spectrometric analysis.
According to mass spectrometry (MS) analytic data and chemical surface identification in the experiment, the nSi mass-analytical chip established in this study was characterized as the following:
1. As the etching time increased, the nano-structured surface of the mass spectrometric analysis chips became coarser. MS signal intensity subsequently increased, but remained under a specific level.
2. After the analysis of ESCA (electron spectroscopy for chemical analysis), chips with different surface properties obtained more corresponding element signals (e.g., a carbon signal received on a hydrophobic chip) than chips without chemical modification.
3. Chips after chemical modification with different properties peptides could get higher signal intensity than chips without chemical modification.
關鍵字(中) ★ 質譜晶片
★ 表面化學改質
★ 奈米結構矽基材
關鍵字(英) ★ mass spectrometry
★ surface chemical modification
★ nanofilament silicon substrate
論文目次 目錄
摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
一、 緒論 1
二、文獻回顧 3
2.1質譜儀的發展起源 3
2.2質譜離子源介紹 5
2.2.1 電噴灑離子化法 6
2.2.1.1電噴灑離子源構造 6
2.2.1.2 電噴灑如何形成氣態離子 7
2.2.1.3電噴灑離子化法的優缺點 11
2.2.2 基質輔助雷射脫附離子化法 13
2.2.2.1基質的特性及作用 15
2.2.2.2 基質輔助雷射脫附離子化法的離子化機制 17
2.2.2.3 基質輔助雷射脫附離子化法的優缺點 18
2.2.3 表面輔助雷射脫附離子化 20
2.2.3.1 碳粉 21
2.2.3.2 奈米碳管 21
2.2.3.3 金奈米粒子 22
2.2.3.4 氧化鐵微米粒子 22
2.2.3.5 二氧化鈦奈米粒子 23
2.2.3.6 Desorption/ionization mass spectrometry on porous silicon 24
2.2.3.7 矽材及其衍生物 26
2.3 表面增強雷射脫附離子化 27
三、實驗材料與方法 31
3.1實驗設備 31
3.2 實驗藥品 32
3.3 實驗方法 34
3.3.1 矽晶片表面蝕刻 34
3.3.2 表面化學改質 35
3.3.3 質譜儀測試 41
3.3.4 螢光驗證 43
四、結果與討論 44
4.1 矽晶片表面結構最佳化之建構 44
4.2 矽晶片不同表面之改質與鑑定 51
4.2.1 不同化學表面之鑑定 52
4.2.2 固定化金屬離子親和表面之鑑定 56
4.2.3 矽晶片表面化學改質之質譜分析 57
4.2.3.1親疏水性表面質譜結果 59
4.2.3.2正負電性表面質譜結果 65
4.2.3.3固定化金屬離子親和表面質譜結果 68
五、結論 77
參考文獻 79
Acknowledgement 90
圖目錄
圖2. 1 質譜儀結構圖 4
圖2. 2 電噴灑離子化構造與質譜儀銜接介面 7
圖2. 3 (A)溶液中解離的正離子受電場牽引,推擠管道出口端液面成為圓錐形(B)正離子受電場牽引之力大於液面的表面張力,形成可穩定產生電噴灑的泰勒錐 8
圖2. 4 電噴灑所產生的帶電荷液滴如何形成氣相離子的過程示意圖 9
圖2. 5 基質輔助雷射脫附離子化法示意圖 14
圖2. 6 不同化學性質或固定不同生物分子之晶片表面 30
圖3. 1 矽晶片表面蝕刻流程圖 34
圖3. 2 疏水性表面官能基改質法 35
圖3. 3 親水性官能基表面改質法 37
圖3. 4 正電性官能基表面改質法 38
圖3. 5 負電性官能基表面改質法 38
圖3. 6 帶有金屬離子的IMAC表面改質法 40
圖3. 7 質譜分析流程圖 42
圖4. 1 沉積金薄膜厚度3 nm矽基材表面SEM圖 45
圖4. 2 輔助蝕刻金屬為金、沉積厚度3 nm、蝕刻溶液為HF/ Ethanol/ H2O2(1:1:1 V/V/V)所做的不同蝕刻時間作質譜效率測試,樣本為Des-Arg9- Bradykinin、濃度10-7 M 46
圖4. 3 輔助蝕刻金屬為金、沉積厚度3 nm、蝕刻溶液為HF/ Ethanol/ H2O2(1:1:1 V/V/V)所做的不同蝕刻時間作質譜效率測試,樣本為Des-Arg9- Bradykinin、濃度10-8 M 46
圖4. 4 輔助蝕刻金屬為金、沉積厚度3 nm、蝕刻溶液為HF/ Ethanol/ H2O2(1:1:1 V/V/V)所做的不同蝕刻時間作質譜效率測試,樣本為Des-Arg9- Bradykinin、濃度10-9 M 47
圖4. 5 輔助蝕刻金屬為金、沉積厚度3 nm、蝕刻溶液為HF/ Ethanol/ H2O2(1:1:1 V/V/V)樣本為Des-Arg9- Bradykinin之不同蝕刻時間的訊號/雜訊比(S/N ratio) 47
圖4. 6不同蝕刻時間之質譜測試圖(a) 30 s (b) 60 s (c) 180 s (d) 300 s (e) 360 s 49
圖4. 7 輔助蝕刻金屬為金、沉積厚度3 nm、蝕刻溶液為HF/ Ehanol/ H2O2(1:1:1 V/V/V)樣本為Des-Arg9- Bradykinin之不同蝕刻時間對螢光測試的結果,其中(a) 蝕刻時間30秒之矽晶片(b) 蝕刻時間60秒之矽晶片(c) 蝕刻時間180秒之矽晶片(d) 蝕刻時間300秒之矽晶片(e) 蝕刻時間360秒之矽晶片 50
圖4. 8 不同表面性質之矽晶片示意圖。 51
圖4. 9 疏水性表面之化學分析電子儀分析圖 52
圖4. 10 親水性表面之化學分析電子儀分析圖 53
圖4. 11 正電性表面之化學分析電子儀分析圖 54
圖4. 12 負電性表面之化學分析電子儀分析圖 55
圖4. 13 固定化金屬離子親和表面(IMAC)之化學分析電子儀分析圖 56
圖4. 14 (a) 疏水性胜肽及(b)親水性胜肽在不同化學性質表面之質譜測試圖 61
圖4. 15 疏水性胜肽在不同特性表面之質譜圖 (a)純蝕刻之表面 (b) 疏水性表面 (c) 正電性表面 (d) 負電性表面 (e) 銅離子表面 (f) 鎳離子表面 63
圖4. 16 親水性胜肽在不同特性表面之質譜圖 (a) 純蝕刻之表面(b) 疏水性表面 (c) 負電性表面 64
圖4. 17 正電性胜肽在不同化學性質表面之質譜測試圖 66
圖4. 18 正電性胜肽在不同特性表面之質譜圖 (a) 純蝕刻之表面 (b) 疏水性表面 (c) 負電性表面 67
圖4. 19含有連續三個Histidine殘基之胜肽在不同化學性質表面之質譜測試圖 70
圖4. 20 含連續三個Histidine殘基之胜肽在不同特性表面之質譜圖 (a) 純蝕刻之表面 (b) 疏水性表面 (c) 負電性表面 (d) 銅離子表面 (e) 鎳離子表面 72
圖4. 21 含有一個Histidine殘基之胜肽在不同化學性質表面之質譜測試圖 74
圖4. 22 含一個Histidine殘基之胜肽在不同特性表面之質譜圖 (a) 純蝕刻之表面 (b) 疏水性表面 (c) 負電性表面(d) 銅離子表面 (e) 鎳離子表面 76
表目錄
表2. 1 常用的基質(Matrix)及適用的分析物 16
表4. 1 蝕刻時間與表面粗糙度之關係 49
表4. 2 本實驗用各胜肽基本特性 58
表4. 3 疏水性胜肽以及親水性胜肽在不同化學性質表面之質譜訊號值 61
表4. 4 正電性胜肽在不同化學性質表面之質譜訊號值 66
表4. 5 含有連續三個Histidine殘基之胜肽在不同化學性質表面之質譜訊號值 70
表4. 6 含有一個Histidine殘基之胜肽在不同化學性質表面之質譜訊號值 74
參考文獻 參考文獻
[1]. Wei J., Buriak J. M., Siuzdak G., “Desorption–ionization mass spectrometry on porous silicon” Nature 399, 243-246, 1999.
[2]. Northen T. R., Yanes O., Northen M. T., Marrinucc D., Uritboonthai W., Apon J., Golledge S. L., Nordstrom A., Siuzdak G., “Clathrate nanostructures for mass spectrometry” Nature 449, 1033-1037, 2007.
[3]. Tsao C. W., Kumar P., Liu J., DeVoe D. L., “Dynamic electrowetting on nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry” Anal. Chem. 80, 2973-2981, 2008.
[4]. Seibert V., Wiesner A., Buschmann T., Meuer J., “Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and ProteinChip technology in proteomics research” Pathol. Res. Pract. 200, 83-94, 2004.
[5]. Thomson J.J., “Rays of positive electricity and their application to
chemical analysis” Longmans Green, London, 1913.
[6]. 王應瓊著,儀器分析上冊,中央圖書出版社,p.p.165-167,1973.
[7]. Wu C.j., Liang S.S., Chen S.H., “Mass spectrometry in proteome application” 科儀新知,第三十卷,第四期,p.p.14-27,2009.
[8]. 吳慧芬,呂麗琪,”質譜儀分析技術的突破開展生化科技新領域”科
學發展,第362期,p.p. 48-51,2003.
[9]. Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M., “Electrospray ionization for mass spectrometry of large biomolecules” Science 246, 64-71, 1989.
[10]. Gaskell S. J., “Electrospray : Principles and Practice” J. Mass. Spectrom. 32, 677-688, 1997.
[11]. Chace D. H., “Mass spectrometry in newborn and metabolic screening: historical perspective and future directions” J. Mass. Spectrom. 44, 163–170, 2009.
[12]. Guilhaumou R., Solasa C., Romeb A., Giocantia M., Andreb N, Lacarellea B., “Validation of an electrospray ionization LC/MS/MS method for quantitative analysis of vincristine in human plasma samples” J. Chromatogr. B 878, 423–427, 2010.
[13]. Fitzen M., Alvelius G., Nordling K., Jornvall H., Bergman T. Johansson J., “ Peptide-binding specificity of the prosurfactant protein C Brichos domain analyzed by electrospray ionization mass spectrometry” Rapid Commun. Mass Spectrom. 23, 3591–3598, 2009.
[14]. 廖寶琦,”電噴灑離子化法 ”,國立成功大學 環境醫學研究所。
[15]. Kebarle P., “A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry” J. Mass Spectrom. 35, 804–817, 2000.
[16]. Bruins P. A., “Mechanistic aspects of electrospray ionization” J. Chromatogr. A 794, 345-357, 1998.
[17]. Cole R. B., “Some tenets pertaining to electrospray ionization mass spectrometry” J. Mass Spectrom. 35, 763–772, 2000.
[18]. Iribarne J. V., Thronson B. A., “On the Evaporation of Small Ion from Charged Droplets” J. Chem. Phys. 64, 2287-2294, 1976.
[19]. Dole D., Mack L. L., Hines R. L., Mobley R. C., Ferguson L. D., Alice M. B. ”Evidence of charge inversion in the reaction of single charged anions with multiply charged macroions” J. Chem. Phys. 49, 2240-2244, 1968.
[20]. Zhao Q., Soyk M. W., Schieffer G. M., Fuhrer K., Gonin M. M., Houk R. S., Badmana E. R., “An ion trap-ion mobility-time of flight mass
spectrometer with three ion sources for ion/ion reactions” J. Am. Soc. Mass Spectrom. 20, 1549–1561, 2009.
[21]. Emory J. F., Hassell K. H., Londry F. A., McLuckey S. A., “Transmission mode ion/ion reactions in the radio frequency-only ion guide of hybrid tandem mass spectrometers” Rapid Commun. Mass Spectrom. 23, 409–418, 2009.
[22]. Fenn J. B., “Electrospray wings for molecular elephants” Angew. Chem. Int. Ed. 42, 3871 – 3894, 2003.
[23]. Labowsky M., Fenn J.B., Fernandez de la Mora J., “A continuum model for ion evaporation from a drop: effect of curvature and charge on ion solvation energy” Anal. Chim. Acta 406, 105–118, 2000.
[24]. Tsao C. W., “Interfacing microfluidic bioanalysis with high sensitivity mass spectrometry” Ph.D. Thesis, University of Maryland, 2008.
[25]. Honig, R. E., Woolston J. R., “Laser-induced emission of electrons, ions, and neutral atoms from solid surfaces” Appl. Phys. Lett. 2, 138-139, 1963.
[26]. Greenwood P. F., Zhang E., Vastola F. J., Hatcher P. G.”Laser micropyrolysis gas-chromatography mass spectrometry of coal” Anal. Chem. 65, 1937-1946, 1993.
[27]. Vastola F. J., Mumma, R. O., Pirone A. J., “Analysis of organic salts by laser ionization” Org. Mass Spectrom. 3, 101-106, 1970.
[28]. Posthumus M. A., Kistemaker P. G., Meuzelaar H. L. C., ” Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules” Anal. Chem. 50, 985-991, 1978.
[29]. Linder B., Seydel U., ” Laser desorption mass spectrometry of nonvolatiles under shock wave conditions” Anal. Chem. 57, 895-898, 1985.
[30]. Tanaka, K., Ido Y., Akita S., Yoshida Y., Yoshida T., “Second Japan-China Joint Symposium on Mass Spectrometry” 1987.
[31]. Tanaka K., Waki H., Ido Y., Akita S., Yoshida Y., Yoshida T., Matsuo T., “Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry” Rapid Comm. Mass Spectrom. 2, 153-155, 1988.
[32]. Karas M., Hillenkamp F., “Laser desorption ionization of proteins with molecular masses exceeding 10 000 Daltons” Anal. Chem. 60, 2299-2301, 1988.
[33]. Hillenkamp F., Karas M., Beavis R. C., Chait B. T., “Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers” Anal. Chem. 63, 1193A-1203A, 1991.
[34]. http://www.magnet.fsu.edu/education/tutorials/tools/ionization_maldi.html
[35]. Levis R. J., “Laser desorption and ejection of biomolecules from the condensed phase into the gas phase” Annu. Rev. Phys. Chem. 45, 483-518, 1994.
[36]. Bahr U., Karas M. , Hillenkamp F., “Analysis of biopolymers by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry” Fresenius J. Anal. Chem. 348, 783-791, 1994.
[37]. Overberg A., Karas M., Bahr U., Kaufmann R., Hillenkamp F., “Matrix-assisted infrared-laser (2.94 μm) desorption/ionization mass spectrometry of large biomolecules” Rapid Comm. Mass Spectrom. 4, 293-296, 1990.
[38]. Fitzgerald M. C., Parr G. R., Smith L. M., “Basic matrices for the matrix-assisted laser desorption/ionization mass spectrometry of proteins and oligonucleotides” Anal. Chem. 65, 3204-3211, 1993.
[39]. Karas M., Bahr U., Giesmann U., “Matrix-assisted laser desorption ionization mass spectrometry” Mass Spectrom. Rev. 10, 335-357, 1991.
[40]. Zenobi R., Knochenmuss R., “Ion formation in MALDI mass spectrometry” Mass Spectrom. Rev. 17, 337–366, 1998.
[41]. Sunner J., Morales A., Kebarle P., “Kinetic modeling of fast atom bombardment spectra of glycerol-diethanolamine mixtures” Anal. Chem. 60, 98-104, 1988.
[42]. Sunner J., “Ionization in liquid secondary ion mass spectrometry (LSIMS)” Org. Mass Spectrom. 28, 805-823, 1993.
[43]. Llenes C. F., O'Malley R. M., Cotter R. J., “Information cation attachment in the analysis of polystyrene and polyethylene glycol by laser-desorption time-of-flight mass spectrometry” Rapid Comm. Mass Spectrom. 6, 564-570, 1992.
[44]. Belu A. M., DeSimone J. M., Linton R. W., Lange G. W., Friedman R. M., “Evaluation of matrix-assisted laser desorption ionization mass spectrometry for polymer characterization” J. Am. Soc. Mass Spectrom. 7, 11-24, 1996.
[45]. Sunner J., Dratr E., Chen Y. C., “Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions” Anal. Chem. 67, 4335-4342, 1995.
[46]. Wu J. Y., Chen Y. C., “A novel approach of combining thin-layer
chromatography with surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry” J. Mass Spectrom. 37, 85–90, 2002.
[47]. Hoang T.T., Chen Y.F., May S. W., Browner R. F. “Analysis of organoselenium compounds in human urine using active carbon and chemically modified silica sol-gel surface-assisted laser desorption/ionization high-resolution time-of-flight mass spectrometry Anal. Chem. 76, 2062-2070, 2004.
[48]. Xu S. Y., Li Y. F., Zou H. F., Qiu J. H., Guo Z., Guo B. C., “Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry” Anal. Chem. 75, 6191-6195, 2003.
[49]. Ren S. F., Guo Y. L., “Oxidized carbon nanotubes as matrix for matrix-assisted laser desorption/ionization time-of-flight mass
spectrometric analysis of biomolecules” Rapid Commun. Mass Spectrom. 19, 255–260, 2005.
[50]. McLean J. A., Stumpo K. A., Russell D. H., “Size-Selected (2-10 nm) Gold nanoparticles for matrix assisted laser desorption ionization of peptides” J. Am. Chem. Soc. 127, 5304-5305, 2005.
[51]. Su C. L., Tseng W. L., “Gold nanoparticles as assisted matrix for
determining neutral small carbohydrates through Laser desorption/Ionization time-of-flight mass spectrometry” Anal. Chem. 79, 1626-1633, 2007.
[52]. Schurenberg M., Dreisewerd K., Hillenkamp F., “Laser
dsorption/ionization mass spectrometry of peptides and proteins with
particle suspension matrixes” Anal. Chem. 71, 221-229, 1999.
[53]. Chen W. Y., Chen Y. C., “Affinity-based mass spectrometry using
magnetic iron oxide particles as the matrix and concentrating probes for
SALDI MS analysis of peptides and proteins” Anal. Bioanal. Chem. 386,
699–704, 2006.
[54]. Chen C. T., Chen Y. C. “Molecularly Imprinted TiO2-matrix-assisted
Laser desorption/ionization mass spectrometry for selectively detecting
α-Cyclodextrin” Anal. Chem. 76, 1453-1457, 2004.
[55]. Trauger S. A., Go E. P., Shen Z. X., Apon J. V., Compton B. J., Bouvier E.
S. P., Finn M. G., Siuzdak G., “High sensitivity and analyte capture with
desorption/ionization mass spectrometry on silylated porous silicon” Anal.
Chem. 76, 4484-4489, 2004.
[56]. Thomas J. J., Shen Z., Blackledge R., Siuzdak G., “Desorption–ionization
on silicon mass spectrometry: an application in forensics” Anal. Chim.
Acta 442, 183–190, 2001.
[57]. Huikko K., Ostman P., Sauber C., Mandel F., Grigoras K., Franssila S.,
Kotiaho T., Kostiainen R., “Feasibility of atmospheric pressure
desorption/ionization on silicon mass spectrometry in analysis of drugs”
Rapid Commun. Mass Spectrom. 17, 1339–1343, 2003.
[58]. Pihlainenv K., Grigoras K., Franssila S., Ketola R., Kotiaho T.,
Kostiainen R., “Analysis of amphetamines and fentanyls by atmospheric
pressure desorption/ionization on silicon mass spectrometry and
matrix-assisted laser desorption/ionization mass spectrometry and its
application to forensic analysis of drug seizures” J. Mass Spectrom. 40,
539–545, 2005
[59]. Kruse R. A., Li X. L., Bohn P. W., Sweedler J. V. “Experimental factors
controlling analyte ion generation in laser desorption/ionization mass
spectrometry on porous silicon” Anal. Chem. 73, 3639-3645, 2001.
[60]. Alimpiev S., Nikiforov S., Karavanskii V., “On the mechanism of laser-induced desorption–ionization of organic compounds from etched silicon and carbon surfaces” J. Chem. Phys. 115, 1891-1901, 2001.
[61]. Górecka-Drzazga A., Bargiel S., Walczak R., Dziuban J. A., Kraj A., Dylag T., Silberring J., “Desorption/ionization mass spectrometry on porous silicon dioxide” Sensor. Actuator. B 103, 206–212, 2004.
[62]. Go E. P., Apon J. V., Luo G., Saghatelian A., Daniels R. H., Sahi V., Dubrow R., Cravatt B. F., Vertes A., Siuzdak G., “Desorption/ionization on silicon nanowires” Anal. Chem. 77, 1641-1646, 2005.
[63]. Kinumi T., Saisu T., Takayama M., Niwa H., “Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an
inorganic particle matrix for small molecule analysis” J. Mass Spectrom. 35, 417–422, 2000.
[64]. Zhang Q. C., Zou H. F., Guo Z., Zhang Q., Chen X. M., Ni J. Y., “Matrix-assisted laser desorption/ionization mass spectrometry using porous silicon and silica gel as matrix” Rapid Commun. Mass Spectrom. 15, 217-223, 2001.
[65]. Wen X. J., Dagan S., Wysocki V. H., “Small-molecule analysis with silicon-nanoparticle-assisted laser desorption/ionization mass spectrometry” Anal. Chem. 79, 434-444, 2007.
[66]. Hutchens T. W., Yip T. T., “New desorption strategies for the mass spectrometric analysis of macromolecules” Rapid Commun. Mass Spectrom. 7, 576-580,1993.
[67]. Tang N., Tornatore P., Weinberger S. R., “Current developments in SELDI affinity technology” Mass Spectrom. Rev. 23, 34–44, 2004.
[68]. Wang S., Diamond D. L., Hass G. M., Sokoloff R., Vessella R.L., “Identification of prostate specific membrane antigen (PSMA) as the target of monoclonal antibody 107-1A4 by ProteinChip array, surface-enhanced laser desorption/ionization (SELDI) technology” Int. J. Cancer 92, 871–876, 2001.
[69]. Grus F. H., Joachim S. C., Pfeiffer N. “Analysis of complex autoantibody repertoires by surface-enhanced laser desorption/ionization time of flight mass spectrometry” Proteomics 3, 957–961, 2003.
[70]. Xu S. Y., Zhou H. J., Pan C. S., Fu Y., Zhang Y., Li X., Ye M. L., Zou H. F., “Iminodiacetic acid derivatized porous silicon as a matrix support for sample pretreatment and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis” Rapid Commun. Mass Spectrom. 20, 1769–1775, 2006.
[71]. Dunn J. D, Igrisan E. A., Palumbo A. M., Reid G. E., Bruening M. L.,
“Phosphopeptide enrichment using MALDI plates modified with high-capacity polymer brushes” Anal. Chem. 80, 5727–5735, 2008.
[72]. Dunn J. D, Watson J. T., Bruening M. L., “Detection of phosphopeptides using Fe(III)-nitrilotriacetate complexes immobilized on a MALDI plate” Anal. Chem. 78, 1574-1580, 2006.
[73]. Ulman A. "Formation and Structure of Self-Assembled Monolayers", Chem. Rev. 96, 1533-1554, 1996.
[74]. Bigelow W. C., Pickett D. L., Zisman, W. A. “Oleophobic monolayers I. films adsorbed from solution in non-polar liquids” J. Colloid Interface Sci. 1, 513-538, 1946.
[75]. Nuzzo R. G., Allara D. L., “Adsorption of bifunctional organic disulfides on gold surfaces” J. Am. Chem. Soc. 105, 4481-4483, 1983.
[76]. Yu J. j., Tan Y. H., Li X., Kuo P. K., Liu G. y., “A nanoengineering approach to regulate the lateral heterogeneity of self-assembled monolayers.” J. Am. Chem. Soc. 128, 11574-11581, 2006.
[77]. Zhang Z., Chen S. F., Jiang S. Y. “ Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein
Immobilization” Biomacromolecules 7, 3311-3315, 2006.
[78]. Kim D. C., Kang D. J., “ Molecular recognition and specific interactions for biosensing applications “ Sensors 8, 6605-6641, 2008.
[79]. Frederixa F., Bonroya K., Reekmansa G., Laureyna W., Campitellia A., Abramovb M. A., Dehaenb W., Maes G., “Reduced nonspecific adsorption on covalently immobilized protein surfaces using poly(ethylene oxide) containing blocking agents” J. Biochem. Biophys. Methods 58, 67–74, 2004.
[80]. Lee J., Xu Y. D., Chen Y., Sprung R., Kim S. C., Xie S. H., Zhao Y. M. “Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS” Molecular & Cellular Proteomic 6, 669-676, 2007.
[81]. Porekar V. G., Menart M., “Perspectives of immobilized-metal affinity chromatography” J. Biochem. Biophys. Methods 49, 335–360, 2001.
[821]. Li X., Bohn P. W., “Metal-assisted chemical etching in HF/H2O2 produces porous silicon” Appl. Phys. Lett. 77,2572-2574, 2000.
[83]. Fang H., Wu Y., Zhao J. H., Zhu J., “Silver catalysis in the fabrication of silicon nanowire arrays” Nanotechnology 17, 3768–3774, 2006.
[84]. Moulder J. F., Stickle W. F., Sobol P. E., Bomben K. D., "Handbook of x-ray photoelectron spectroscopy" Physical Electronics Inc. 1995
[85]. Ladd J., Lu H. L., Taylor A. D., Goodell V., Disis M. L., Jiang S.Y. “Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor” Colloids and Surfaces B: Biointerfaces 70, 1-6, 2009.
[86]. Boozer C., Ladd J., Chen S. G., Yu Q. M., Homola J., Jiang S.Y., “DNA directed protein immobilization on mixed ssDNA/Oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors” Anal. Chem. 76, 6967-6972, 2004.
[87]. Mengistu T. Z., DeSouza L., Morin S., “Probing proteins on functionalized silicon surfaces using matrix-assisted laser desorption/ionization mass spectrometry” J. Chromatogr. A 1135, 194–202, 2006.
[88]. Todd R. J., Van Dam M. E., Casimiro D., Haymore B. L., Arnold F. H.,
“Cu(II)-binding properties of a cytochrome c with a synthetic
metal-binding site: His-X3-His in an α-Helix” Protein. Struct. Funct.
Genet. 10, 156-161, 1991.
[89]. Xu Y. D., Bruening M. L., Watson J. T. “Use of polymer-modified
MALDI-MS probes to improve analyses of protein digests and DNA”
Anal. Chem. 76, 3106-3111 , 2004.
[90]. Ma Z. W., Mao Z. W., Gao C. Y., “Surface modification and property analysis of biomedical polymers used for tissue engineering” Colloids and Surfaces B: Biointerfaces 60, 137–157, 2007.
[91]. Zhou H. J., Xu S. Y., Ye M. L., Feng S., Pan C. S., Jiang X. G., Li X.,
Han G. H., Fu Y., Zou H. F., “Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptides and MALDI-TOF MS analysis” Journal of Proteome Research 5, 2431-2437, 2005.
指導教授 陳文逸(Wen-yih Chen) 審核日期 2010-5-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明