博碩士論文 973204044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:18.226.17.86
姓名 廖瑋婷(Wei-ting Liao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金觸媒在低溫下一氧化碳氧化之應用
(Low Temperature CO oxidation over supported gold catalysts)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 金為貴重金屬,是一種非常穩定且不與其它物質發生反應;但在奈米尺寸下,奈米級的金擔載於金屬氧化物時,可在低溫下將一氧化碳氧化而生成二氧化碳。CO是一種有毒、無色無味的氣體,通常在燃燒不完全時會被產生。觸媒對於空氣清淨及降低空氣污染的重要性日益漸增,CO氧化反應對環境保護是非常重要的。日本的Haruta教授提出,當金利用含浸法、共沉澱法及沉積沉澱法,將奈米金擔載於金屬氧化物上,其金觸媒可在200 K下將CO氧化。對於金觸媒的活性影響包括擔體選擇、製備方法及製備條件。
本研究利用添加不同的促進劑改變擔體的電子效應及幾何效應。本研究利用添加銅及鈷作為促進劑於二氧化鈦中進行擔體的改質,利用初溼含浸法將金屬硝酸物水溶液加入Evonik-Degussa 公司所提供的TiO2 (P-25),均勻混合後煅燒再使用沉積沉澱法將金沉積於擔體上。所製備出來的金觸媒分別以感應耦合電漿質譜分析儀(ICP-MS)、X光繞射分析儀(XRD)、穿透式電子顯微鏡(TEM)、高解析穿透式電子顯微鏡 (HRTEM)及X光電子能譜儀(XPS)等儀器來鑑定其物理及化學性質。反應以固定床,反應器填充0.05 克觸媒,並以進料為1% CO 在空氣中,總流量為100 ml/min 及150 ml/min 進行反應。
使用沉積沉澱法可得到高分散性及較小的粒徑分佈,但無法將金完全的擔載於擔體上。本研究所使用的兩種不同的促進劑添加於Au/TiO2中,其促進劑皆可增加觸媒活性。銅及鈷增加觸媒活性的原因不同。銅作為促進劑的觸媒中,以Au/5% CuOx-TiO2為最佳觸媒;鈷作為促進劑的觸媒中,以Au/3% CoOx-TiO2為最佳觸媒。使用兩者最佳觸媒進行長時間耐久測試中,以Au/3% CoOx-TiO2較佳。本研究中成功製備出最適含量的促進劑添加於Au/TiO2進行擔體的改質,並且在WHSV=180,000 ml/h g下,可將CO完全氧化。
摘要(英) Massive gold was a stable and precious metal; it is not an active catalyst. In nanosize scale,the nano-gold supported on the metal oxide could oxidize CO at low temperature and produced carbon dioxide. CO was a toxic, colorless and tasteless gas; it is produced by the fuel without complete oxidation. The most extensively studied reaction in the history of heterogeneous catalysis is becoming increasingly important in the context of cleaning air and lower automotive emissions. The reaction is important for environment protection. When gold is deposited as nanoparticles on metal oxides by impregnation, co-precipitation and deposition-precipitation (DP) techniques, it exhibits surprisingly high catalytic activity for CO oxidation at a temperature as low as 200 K. The activity of gold catalysts also depends on support, preparation method and condition. The promoters were added in Au/TiO2 to change the support properties, including electronic effect and geometric effect.
In this study, the effects of promoter such as Cu and Co were investigated. The support was prepared by incipient-wetness impregnation with aqueous solution of nitrate salt. TiO2 was supplied by Evonik-Degussa Company (P-25). A series of Au catalysts was prepared by deposition-precipitation (DP) method and the pH value was 7. The catalysts were characterized by inductively-coupled plasma-mass spectrometry (ICP-MS), temperature programming reduction (TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron
spectroscopy (XPS). The reaction was carried out in a fixed bed reactor with a feed containing 1% CO in air at WHSV=120,000 ml/h g and WHSV=180,000 ml/h g.
High gold dispersion and narrow size distribution was obtained by DP method. Two different promoters were added in Au/TiO2, which were also enhanced the activity on CO
oxidation. Cu and Co have different promotive effect. Au/5% CuOx-TiO2 was the best catalyst in a series of Au/CuOx-TiO2 and the Au/3% CoOx-TiO2 was the best catalysts in a series of Au/CoOx-TiO2. Au/3% CoOx-TiO2 had better stability than Au/5% CuOx-TiO2 catalyst. In this
study, we have successfully prepared the catalysts at suitable content with very high activity on CO oxidation.
關鍵字(中) ★ 金
★ 銅
★ 鈷
★ 一氧化碳氧化
★ 觸媒
關鍵字(英) ★ Catalysts
★ CO oxidation
★ Cobalt
★ Copper
★ Gold
論文目次 摘要...............................................i
Abstract...........................................ii
Table of Contents..................................iv
List of Tables.....................................vii
List of Figures....................................viii
Chapter 1. Introduction............................1
Chapter 2. Literature review.......................3
2.1 Prepared method................................3
2.1.1 Impregnation method..........................3
2.1.2 Co-precipitation method......................3
2.1.3 Deposition-precipitation method..............3
2.1.4 Other method.................................8
2.2 The application for gold catalysts.............9
2.2.1 CO oxidation.................................9
2.2.2 Chemical processing..........................9
2.2.3 Fuel cells...................................9
2.3 CO oxidation...................................10
2.3.1 Particle size effect.........................10
2.3.2 Support effect...............................12
2.3.3 Promoter effect..............................12
2.4 Reaction mechanism.............................13
Chapter 3. Experimental............................15
3.1 Chemicals......................................15
3.2 Catalyst preparation...........................15
3.2.1 Preparation of support.......................15
3.2.2 Preparation of gold catalysts................16
3.3 Characterization...............................18
3.3.1 ICP-MS.......................................18
3.3.2 H2-TPR.......................................18
3.3.4 TEM and HRTEM................................19
3.3.5 XPS..........................................20
3.4 CO oxidation reaction..........................21
Chapter 4. Low temperature CO oxidation by Au/CuOx-TiO2 catalysts..........................................24
4.1 Introduction...................................24
4.2 Effect of Cu on Au/TiO2........................24
4.2.1 ICP-MS.......................................24
4.2.2 H2-TPR.......................................25
4.2.3 XRD..........................................27
4.2.4 TEM..........................................28
4.2.5 HRTEM........................................30
4.2.6 XPS..........................................32
4.3 Catalytic activity in CO oxidation.............46
4.4 Summary........................................47
Chapter 5. Low temperature CO oxidation by Au/CoOx-TiO2 catalysts..........................................48
5.1 Introduction...................................48
5.2 Effect of Co on Au/TiO2........................48
5.2.1 ICP-MS.......................................48
5.2.2 XRD..........................................49
5.2.3 TEM..........................................50
5.2.4 HRTEM........................................52
5.2.5 XPS..........................................56
5.3 Catalysts activity.............................69
5.4 Summary........................................70
Chapter 6. Summary.................................72
Reference..........................................74
參考文獻 Bond, G. C., Thompson, D. T., “Catalysis by gold”, Catal. Rev. Sci. Eng. 41 (1999) 319.
Bond, G. C., Thomphson, D. T., “Gold-catalysed oxidation of carbon monoxide”, Gold Bull. 33 (2000) 41.
Bond, G. C.,”Catalysis by gold”, 2006.
Cant, N. W., Ossipoff, N. J., “Cobalt promotion of Au/TiO2 catalysts for the reaction of carbon monoxide with oxygen and nitrogen oxides”, Catal. Today 36 (1997) 125.
Casaletto, M. P., Longo, A., Martorana, A., Prestianni, A., Venezia, A. M., “XPS study of supported gold catalysts: the role of Au0 and Au+ species as active sites”, Surf. Interface Anal. 38 (2006) 215.
Chen, M. S., Goodman, D. W., “Structure–activity relationships in supported Au catalysts”, Catal. Today 111 (2006) 22.
Date, M., Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., Haruta, M., “Performance
of Au/TiO2 catalyst under ambient conditions”, Catal. Today 72 (2002) 89.
Grisel, R. J. H., Nieuwenhuys, B. E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts”, Catal. Today 64 (2001) 69.
Guo, H. J., Sun, Q. M., Li, X. H., Wang, Z. X., Peng, W. J., “Synthesis and electorchemical performance of Co3O4/C composite anode for lithium ion batteries”, Trans. Nonferrous Met.Soc. China 19 (2009) 372.
Haruta, M., Kobayashi, T., Sano, H., Yamada, N., “Novel gold catalysts for the oxidation of carbon monoxide”, Chem. Lett. 10 (1987) 405.
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B.,“Low-temperature oxidation of CO over gold supported on TiO2, -Fe2O3, and Co3O4”, J.
Catal. 144 (1993) 175.
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catal. Today 36 (1997) 153.
Haruta, M., “Gold as a low-temperature oxidation catalyst: factors controlling activity and selectivity”, Stud. Surf. Sci. Catal. 110 (1997) 123.
Haruta, M., “Catalysis of gold nanoparticles deposited on metal oxides”, Cattech 6 (2002) 102.
Haruta, M., “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and application”, Gold Bull. 37 (2004) 27.
Haruta, M., “Nanoparticulate gold catalysts for low-temperature CO oxidation”, J. New Mater. Electrochem. Sys. 7 (2004) 163.
Huang, T. J., Tsai, D. H., “CO oxidation behavior of copper and copper oxides”, Catal. Lett. 87 (2003) 173.
Jansson, J., “Low temperature CO oxidation over Co3O4/Al2O3”, J. Catal. 194 (2000) 55.
Jernigan, G. G., Somorjai, G. A., “Carbon monoxide oxidation ver three different oxidation stastes of copper: metallic copper, copper (I) oxide, and copper (II) oxide- A surface science and kinetic study”, J. Catal. 147 (1994) 567.
Landon, P., Collier, P.J., Papworth, A.J., Kiely, C.J., Hutchings, G. J., “Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst”, Chem. Commun. 2058 (2002) 103.
Mallick, K., Scurrell, M. S., “CO oxidation over gold nanoparticles supported on TiO2 and TiO2-ZnO: catalytic activity effects due to surface modification of TiO2 with ZnO”, Appl. Catal. A: Gen. 253 (2003) 527.
Mavrikakis, M., Stoltze, P., Norskov, J. K., “Making gold less noble”, Catal. Lett. 64 (2000) 101.
Moreau, F., Bond, G. C., Taylor, A. O., “Gold on titania catalysts for the oxidation of carbon monoxide: control pH during preparation with various gold content”, J. Catal. 231 (2005) 105.
Okumura, M., Tsubota, S., Haruta, M., “Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2”, J. Mol. Catal. A: Chem. 199 (2003) 73.
Schubert, M. M., Hackenberg, S., Veen, A. C., Muhler, M., Plzak, V., Behm, R. J., “CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction”, J. Catal. 197 (2001) 113.
Skarman, B., Grandjean, D.,
Benfield, R. E., Hinz, A., “Carbon monoxide oxidation on nanostuctured CuOx/CeO2 composite particles characterized by HREM, XPS, XAS and high energy diffraction”, J. Catal.
211 (2002) 119.
Song, K. Y., Kwon, Y. T., Choi, G. J., Lee, W. I., “Photocatalytic activity of Cu/TiO2 with
oxidation state of surface loaded copper”, Bull. Keoren Chem. Soc., 20 (1999) 957.
Tsubota, S., Cunningham, D. A. H., Bando, Y., Haruta, M., “Preparation of nanometer gold strongly interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO”, Stud. Surf. Sci. Catal. 91 (1995) 227.
Wolf, A., Schuth, F.,“A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Appl. Catal. A: Gen. 226 (2002) 1.
Wang, D., Hao, Z., Cheng, D., Shi, X., Hu, C., “Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts”, J. Mol. Catal. A: Chem. 200
(2003) 229.
Yao, H. C., Shelef, M., “Nitric oxide and carbon manoxide chemisorptions on cobalt-containing spinels”, J. Phsy. Chem. 78 (1974) 2490.
Yan, K., Yanhua, Z., Xiaoshu, W., Jun, W., Haiqin, W., Lin, D., Qijie, Y., “Catalytic performance of Cu-MCM41 with high copper for NO reduction by CO”, Stud. Surf. Sci. Catal. 165 (2007) 749.
Zhang, Y., Chen, Y., Wang, T., Zhou, J., Zhao, Y., “Synthesis and magnetic properties of nanoporous Co3O4 nanoflowers”, 114 (2008) 257.
Zanella, R., Delannoy, L., Louis, C., “Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition–precipitation with NaOH and urea”, Appl. Catal. A: Gen. 291 (2005) 62.
指導教授 陳郁文(Yu-wen Chen) 審核日期 2010-6-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明