博碩士論文 973204029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.147.45.248
姓名 柯苡安(Yi-Ann Ko)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米金觸媒在對氯硝基苯氫化反應的研究
(Hydrogenation of p-CNB over gold catalysts)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 奈米金觸媒於對-氯硝基苯氫化反應上有很好的催化活性和選擇性,此研究中,主要為氧化鈷及金屬鈀對金觸媒在對-氯硝基苯氫化反應活性的影響。氧化鈷方面,先以硝酸鈷含浸於二氧化鈦,之後以沉積沉澱法將金擔載於擔體上,製備一系列部不同鈷/鈦莫耳比的Au/CoOx-TiO2觸媒。而金屬鈀則比較不同還原方法對反應活性的影響,探討最佳的反應觸媒。以感應耦合電漿質譜儀、X光繞射儀、穿透式電子顯微鏡、高解析度穿透式電子顯微鏡、X光能譜散佈分析儀、程式升溫還原分析法和X光光電子能譜儀等儀器鑑定其物理、化學特性和表面性質;利用液相選擇性對-氯硝基苯氫化反應來測試觸媒的活性與選擇性,反應條件設定在:反應器為半批式反應器 (Parr Reactor Model 4842);反應溫度為353 K;壓力為1.2 MPa;攪拌速率500 rpm;反應溶劑為甲醇;結果顯示適量的鈷加入,能強化觸媒的熱穩定度、活性位置的分散性,提升反應的活性和選擇率,在反應時間為180分鐘,p-CNB轉化率達80%時,對主產物對-氯苯胺的選擇率皆大於90 %,其中以鈷/鈦之莫耳比為1/9之觸媒活性表現最佳。而後針對(0.1 wt. %)金(0.01 wt. %)鈀觸媒分別以氫氣還原及硼氫化鈉還原進行探討,在相同的反應條件下,結果顯示鈀能有效提升反應物的轉化率,其中以硼氫化鈉還原下的Au-Pd/TiO2觸媒達最高的活性,可在反應時間180分鐘達100%的轉化率。經由鑑定結果分析Au-Pd/TiO2觸媒經過還原可降低金的氧化態增加反應活性基點且硼的氧化物可以保護金顆粒避免氧化。表示利用金觸媒的良好選擇性與鈀觸媒高轉化率可以有效提高觸媒應用性。
摘要(英) Nanosized gold catalyst has been reported to be a good catalyst for the liquid phase hydrogenation reactions due to their excellent activity and selectivity. In this research, two investigations were carried out on the gold catalyst: the affection of cobalt oxides and palladium to gold catalysts. A series of Au catalysts supported on CoOx-TiO2 with various Co contents were prepared. CoOx-TiO2 support was prepared by incipient-wetness impregnation with aqueous solution of Co(NO3)2 on TiO2. Gold catalysts were prepared by deposition-precipitation method (DP) with 1 wt. % Au loading. The molar rations of Co to Ti were 0, 1/99, 6/94, 1/9, 2/8, 3/7 and 1.0, respectively. The catalysts were denoted as Au/CoOx-TiO2 (m), where m represented the atomic ratio of Co/Ti. Palladium was added as a second metal on TiO2 which were prepared by impregnation with aqueous solution of Pd(NO3)2. Gold catalysts were prepared by deposition-precipitation method (DP) with 1 wt. % Au loading. After preparation, the catalysts were reduced under H2 at 423oC for 2h and reduced by sodium borohydride in the methanolic solution (50/50 methanol/water) at 298K under vigorous stirring and used nitrogen stream to remove air.
These catalysts were characterized by inductively-coupled-plasma-mass spectrometry (ICP-MS), X–ray diffraction (XRD), transmission electron microscopy(TEM), high resolution transmission electron microscopy(HR-TEM), X-ray photoelectron spectroscopy(XPS) and temperature programmed reduction (TPR). The catalytic properties of gold based catalysts were studied on hydrogenation of p–chloronitrobenzene (p-CNB). The conditions for hydrogenation reaction were 1.2 MPa H2 pressure, 353 K reaction temperature and 500 rpm stirring speed. Methanol was used as the solvent, the concentration of p-CNB was 0.2 M (2.54g p–CNB in 80 ml methanol) and the amount of gold based catalyst was 0.5g. The cobalt oxide in Au/CoOx-TiO2 plays the role of a textural promoter, prevents from sintering of gold particle, increased active sites, and then enhanced catalytic activity. Cobalt not only good in steric effect, but also be an electronic promoter, which donated partial electronic to Au. Au/CoOx-TiO2 (1:9) exhibited the highest activity among the series of Au/CoOx-TiO2. The Au-Pd/TiO2 catalyst which reduced by NaBH4 could reached 100% conversion at 180 min reaction time. The results showed that NaBH4 reduction could prevent Au0 from being oxidized, increased the active site. It could be concluded that suitable cobalt amount shows the best performance, and palladium could promote the conversion effectively.
關鍵字(中) ★ 對氯苯胺
★ 對氯硝基苯
★ 奈米金觸媒
★ 液相氫化反應
關鍵字(英) ★ Nanoalloy gold catalyst
★ hydrogenation
★ p-chloronitrobenzene
★ p-chloroaniline
論文目次 Table of Contents
中文摘要 I
Abstract II
Table of Contents IV
List of Tables VIII
List of Figures IX
List of Schemes X
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Nanoalloy gold catalysts 4
2.2 The application of gold catalysts 5
2.2.1 Pollution control 6
2.2.2 Chemical processing 7
2.2.3 Fuel cells 8
2.3 Preparation method of gold catalysts 8
2.3.1 Deposition-precipitation method 8
2.3.2 Photo-deposition method 11
2.3.3 Impregnation method 13
2.3.4 Coprecipitation method 14
2.3.5 Chemical vapor deposition (CVD) method 14
2.4 Hydrogenation 14
2.4.1 Liquid phase hydrogenation of p-chloronitrobenzene 15
2.4.2 Hydrogenation over gold catalysts 20
Chapter 3 Experimental 24
3.1 Chemicals 24
3.2 Preparation of catalysts 24
3.2.1 Preparation of Au/CoOx-TiO2 catalysts 24
3.2.2 Preparation of Au-Pd/TiO2 catalysts 25
3.2.3 Hydrogen reduction treatment 26
3.3 The characterization of catalysts 26
3.3.1 Inductively-coupled-plasma-mass spectrometry (ICP-MS) 26
3.3.2 X-ray diffraction (XRD) 27
3.3.3 Transmission electron microscopy (TEM) 27
3.3.4 Transmission electron microscopy & energy dispersive spectrometer (HRTEM & EDS) 27
3.3.5 Temperature-programmed reduction (TPR) 28
3.3.6 X-ray photoelectron spectroscopy (XPS) 28
3.4 Catalytic activity test 29
Chapter 4 Hydrogenation of p-chloronitrobenzene on Au/CoOx-TiO2 catalysts 34
4.1 Introduction 34
4.2 Results and discussion 36
4.2.1 ICP-MS 36
4.2.2 XRD 36
4.2.3 TEM/HRTEM 37
4.2.4 TPR 39
4.2.5 XPS 40
4.2.6 Reaction Test 42
4.2.7 Reaction rate constant 45
4.3 Conclusion 47
Chapter 5 Hydrogenation of p-chloronitrobenzene on Au-Pd/TiO2 catalysts 70
5.1 Introduction 70
5.2 Results and discussion 72
5.2.1 ICP-MS 72
5.2.2 XRD 72
5.2.3 TEM/HRTEM 72
5.2.4 XPS 75
5.2.5 Reaction Test 76
5.2.6 Reaction rate constant 79
5.3 Conclusion 82
Chapter 6 Summary 107
Suggest for study 109
Appendix Reaction rate constant 110
A.1 Au/CoOx-TiO2 catalysts 111
A.1.1 Au/ TiO2 111
A.1.2 Au/ CoOx-TiO2 (1:99) 111
A.1.3 Au/ CoOx-TiO2 (6:94) 112
A.1.4 Au/ CoOx-TiO2 (1:9) 112
A.1.5 Au/ CoOx-TiO2 (2:8) 113
A.1.6 Au/ CoOx-TiO2 (3:7) 113
A.2 Au-Pd/ TiO2 catalysts 114
A.2.1 Au-Pd/ TiO2 114
A.2.2 Au-Pd/ TiO2 (reduced by H2) 115
A.2.2 Au-Pd/ TiO2 (reduced by NaBH4) 115
Literature Cited 116
參考文獻 Literature Cited
Bailie, J.E., Abdullah, H.A., Anderson, J.A., Rochester, C.H., Richardson, N.V., Hodge, N., Zhang, J.G., Burrows, A., Kiely, C.J., Hutchings, G.J., “Hydrogenation of but-2-enal over supported Au/ZnO catalysts” Phys. Chem. Chem. Phys. 3 (2001) 4113.
Bailie, J.J. and . Hutchings, G.J, “Promotion by sulfur of Ag/ZnO catalysts for the hydrogenation of but-2-enal”C atal. Commun. 2 (2001) 291.
Bailie, J.J. and Hutchings, G.J., “Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation” Chem. Commun. (1999) 2151.
Bond, G.C. and D.T. Thompson, “Catalysis by Gold”, Catalysis Review Science Engineering, 41 (1999) 319.
Bond, G. C., Thomphson, D. T., “Gold-catalysed oxidation of carbon monoxide” Gold Bull. 33 (2000) 41.
Brown, H.C. and Brown, C.A., “The reaction of sodium borohydride with nickel acetate in aqueous solution-A convenient synthesis of an active nickel hydrogenation catalyst of low isomerizing tendency”, J. Am. Chem. Soc. 85 (1963) 1003.
Chan, S. C., Barteau, M. A., “Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition” Langmuir 21 (2005) 5588.
Chen M. S., Goodman, D. W., “The structure of catalytically active gold on titania” Science 306 (2004) 252.
Chen, Y. Z. and Chen, Y. C., “Hydrogenation of para-chloronitrobenzene over nickel borides”, Appl. Catal., A 115 (1994) 45.
Chen, Y., “Chemical preparation and characterization of metal-metalloid ultrafine amorphous alloy particles”, Catal. Today 44 (1998) 3.
Chen, X.F., Li, H.X., Luo, H.S. and Qiao, M.H., “Liquid phase hydrogenation of furfural to furfuryl alcohol over Mo-doped Co-B amorphous alloy catalyst”, Appl. Catal. A: Gen. 233 (2002) 13.
Chen, L. F., Chen, Y. W., “Effect of additive (W, Mo, and Ru) on Ni-B amorphous alloy catalyst in hydrogenation of p-chloronitrobenzene”, Ind. Eng. Chem. Res. 45 (2006) 8866.
Claus, P., “Heterogeneously catalysed hydrogenation using gold catalysts” Appl. Cata. A: Gen 291 (2005) 222.
Claus, P., Brückner, A., Mohr, C. and Hofmeister, H., “Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale: Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups” J. Am. Chem. Soc. 122 (2000) 11430
Claus, P., Schimpf, S., Schödel, R., Kraak, P. Mörke, W. Hönicke, D., “Hydrogenation of crotonaldehyde on Pt/TiO2 catalysts: Influence of the phase composition of titania
on activity and intramolecular selectivity” Appl. Catal. A 165 (1997) 429.
Coq, B., Tijani, A. and Figueras, F., “Influence of alloying platinum for the hydrogenation of p-chloronitrobenzene over PtM/Al2O3 catalysts with M=Sn, Pb, Ge, Al, Zn,” J. Mol. Catal. 71 (1992) 317.
Coq, B., Tijani, A., Dutartre, R. and Figueras, F., “Influence of support and metallic precursor on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts,” J. Mol. Catal. 79 (1993) 253.
Dai, W.L., Qiao, M.H. and Deng, J.F., “XPS studies of a novel amorphous Ni-Co-W-B alloy powder”, Appl. Surf. Sci. 120 (1997) 119.
Daté, M., Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions” Catal. Today 72 (2002) 89.
Delannoy, L., Weiher, N., Tsapatsaris, N., Beesley, A. M., Nchari, L., Schroeder, A. L. M., Louis, C., “Reducibility of supported gold (III) precursors: influence of the metal oxide support and consequences for CO oxidation activity” Top. Catal. 44 (2007) 263.
Deng, J.F., Li, H. and Wang, W.J., “Progress in design of new amorphous alloy catalysts”, Catal. Today 51 (1999) 113.
Englisch, M., Jentys, A., Lercher, J.A., “Structure Sensitivity of the Hydrogenation of Crotonaldehyde over Pt/SiO2 and Pt/TiO2” J. Catal.166 (1997) 25.
Fernandez, A., Caballero, A. Gonzalez-Elipe, A. R., Herrmann, J.-H., Dexpert, H., Villain, F., “In Situ EXAFS Study of the Photocatalytic Reduction and Deposition of Gold on Colloidal Titania” J. Phys. Chem. 99 (1995) 3303.
Gallezot, P. and Richard, D., “Selective Hydrogenation of α, β-Unsaturated Aldehydes “, Catal. Rev. Sci. Eng. 40 (1998) 81.
Grisel, R. J. H., Nieuwenhuys, B. E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts” Catal. Today 64 (2001) 69.
Grisel, R. J. H., Nieuwenhuys, B. E., “Selective oxidation of CO, over supported Au catalysts” J. Catal. 199 (2001) 48.
Grisel, R. J. H., “Supported gold catalysts for environmental applications, thesis, Leiden University”, 2002.
Han, X.X., Zhou, R.X., Zheng, X.M. and Jiang, H., “Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts”, J. Mol. Catal. 193 (2003) 103.
Han, X.X., Zhou, R.X., Lai, G.H. and Zheng, X.M., “Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts”, Catal. Today 93-95 (2004) 433.
Han, X.X., Zhou, R.X., Lai, G.H., Yue, B.H. and Zheng, X.M., “Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts”, J. Mol. Catal. A: Chem. 209 (2004) 83.
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3,and Co3O4” J. Catal. 144 (1993) 175.
Haruta, M., “Size- and support-dependency in the catalysis of gold” Catal. Today 36 (1997) 153.
Haruta, M., “Gold as a low-temperature oxidation catalyst: factors controlling activity and selectivity” Stud. Surf. Sci. Catal. 110 (1997) 123.
Haruta, M., “Catalysis of gold nanoparticles deposited on metal oxides” Cattech 6 (2002) 102.
Haruta, M., “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and application,” Gold Bull., 37 (2004) 27.
Haruta, M., “Nanoparticulate gold catalysts for low-temperature CO oxidation” J. New Mater. Electrochem. Sys. 7 (2004) 163.
Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide
” , J. Catal. 115 (1989) 301.
Hou, Y.J., Wang, Y.Q., He, F., Han, S., Mi, Z.T., Wu, W. and Min, E., “Liquid pahse hydrogenation of 2-ethylanthraquinone over La-doped Ni-B amorphous alloy catalysts”, Mat. Lett. 58 (2004) 1267.
Hutchings, G. J., “Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts”, J. Catal. 96 (1985) 292.
Jacobs, G., Graham, U. M., Chenu, E., Patterson, P. M., Dozier, A., Davis, B. H. “Low-temperature water–gas shift: impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design”, J. Catal 229 (2005) 499.
J. Jia, K. Haraki, J.N. Kondo, K. Domen and K. Tamaru, “Selective Hydrogenation of Acetylene over Au/Al2O3 Catalyst” J. Phys. Chem. B 104 (2000) 11153.
Junfeng G., David A. J., Brian F. G. J., “Exploring the structural complexities of metal-metalloid nanoparticles: a Ni.B case as catalyst”, CHEMISTRY-A EUROPEAN JOURNAL 15 (2009) 1134.
Kozlov, A. I., Kozlova, A. P., Liu, H., Iwasawa, Y., “A new approach to active supported Au catalysts” Appl. Catal. A 182 (1999) 9.
Kozlov, A. I., Kozlova, A. P., Asakura, K., Matsui, Y., Kogure, T., Shido, T., Iwasawa, Y., “Supported gold catalysts prepared from a gold phosphine precursor and as-precipitated metal-hydroxide precursors: effect of preparation conditions on the catalytic performance” J. Catal. 196 (2000) 56.
Landon, P., Collier, P.J., Papworth, A.J., Kiely, C.J., Hutchings, G. J., “Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst,” Chem. Commun., 2058 (2002).
Lee, S.P. and Chen, Y.W., “Nitrobenzene hydrogenation on Ni-P, Ni-B and Ni-P-B ultrafine materials”, J. Mol. Catal. A: Chem. 152 (2000) 213.
Li, H., Li, H.X., Dai, W.L., Wang, W.J. and Fang, Z.G., “XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties”, Appl. Sur. Sci. 152 (1999) 25.
Li, H., Li, H.X., Wang, W.J. and Deng, J.F., “Excellent activity of ultrafine Co-B amorphous alloy catalyst in glucose hydrogenation”, Chem. Lett., (1999) 629-630.
Li, H.X., Luo, H.S., Zhuang, L., Dai, W.L. and Qiao, M.H., “Liquid phase hydrogenation of furfrual to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts”, J. Mol. Catal. A: Chem. 203 (2003) 267.
Li, H.X., Li, H., Dai, W.L. and Qiao, M.H., “Preparation of the Ni-B amorphous alloys with variable boron content and its correlation to the hydrogenation activity”, Appl. Catal. A: Gen. 238 (2003) 119.
Li, H.X., Wu, Y.D., Zhang, J., Dai, W.L. and Qiao, M.H., “Liquid phase acetonitrile hydrogenation to ethylamine over a highly active and selective Ni-Co-B amorphous alloy catalyst”, Appl. Catal. A: Gen. 275 (2004) 199.
Li, H., Zhao, Q.F. and Li, H.X., “Selective hydrogenation of p-chloronitrobenzene over Ni-P-B amorphous catalyst and synergistic promoting effect of B and P”, J. Mol. Catal. A: Chem. 285 (2008) 29.
Li, H., Zhang, J. and Li, H.X., “Ultrasound-assisted preparation of a novel Ni-B amorphous catalyst in uniform nanoparticles for p-chloronitrobenzene hydrogenation”, Catal. Comm. 8 (2007) 2211.
Liu, M., Yu, W., Liu, H. and Zheng, J., “Preparation and characterization of polymer-Stabilized ruthenium–platinum and ruthenium–palladium bimetallic Colloids and their catalytic properties for hydrogenation of o-chloronitrobenzene”, J. Colloid Interface Sci. 214 (1999) 231.
Liu, M.H., Yu, W.Y. and Liu, H.F., “Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts”, J. Mol. Catal. A: Chem. 138 (1999) 295.
Liu, Y.C., Huang, C.Y. and Chen, Y.W., “Hydrogenation of p-chloronitrobenzene on Ni-B nanometal catalysts”, J. Nanopart. Res. 8 (2006) 223-234.
Liu, Y.C., Huang, C.Y. and Chen, Y.W., “Liquid-phase selective hydrogenation of p-chloronitrobenzene on Ni-P-B nanocatalysts”, Ind. Eng. Chem. Res. 45 (2006) 62.
Liu, Y.C. and Chen, Y.W., “Hydrogenation of p-chloronitrobenzene on lanthanum-promoted NiB nanometal catalysts”, Ind. Eng. Chem. Res. 45 (2006) 2973.
Liu, R., Yu, Y., Yoshida, K., Li, G., Jiang, H., Zhang, M., Zhao, F., Fujita, S., Arai, M., “Physically and chemically mixed TiO2-supported Pd and Au catalysts: unexpected synergistic effects on selective hydrogenation of citral in supercritical CO2” J. Catal. 269 (2010)191.
Lu, L.H., Ma, Y.H., Guo, F., Ma, R.H., Xin, J.N., Wang, Y. and Kenji, N., “Structural characteristics of Mo modified skeletal Ni and its catalysis for liquid phase hydrogenation of nitro T-acid to T-acid”, Fine Chem. NO.3, 25 (2008) 251.
Lin, H.Y. and Chen, Y.W., “The mechanism of reduction of cobalt by hydrogen”, Mater. Chem. Phys. 85 (2004) 171.
Lin, S., and Vannice, M.A., “Gold dispersed on TiO2 and SiO2: adsorption properties and catalytic behavior in hydrogenation reactions” Catal. Lett. 10 (1991) 47.
Liotta, L.F., Carlo, G. D., Pantaleo, G., Venezia, A.M., Deganello, G., “Co3O4/CeO2 composite oxides for methane emissions abatement: Relationship between Co3O4–CeO2 interaction and catalytic activity”, Appl. Catal. B: Environmental 66 (2006) 217.
Liu, Y.C., Huang, C.Y. and Chen, Y.W., “Hydrogenation of p-chloronitrobenzene on Ni-B nanometal catalysts”, J. Nanopart. Res., 8 (2006) 223.
Luengnaruemitchaia, A., Osuwana, S., Gularib, E., “Selective catalytic oxidation of CO in the presence of H2 over gold catalyst” Int. J. Hydrogen Energy 29 (2004) 429.
Luengnaruemitchai, A., Thoa, D. T. K., Osuwan, S., Gulari, E., “A comparative study of Au/MnOx and Au/FeOx catalysts for the catalytic oxidation of CO in hydrogen rich stream” Int. J. Hydrogen Energy 30 (2005) 981.
Ma, Y.F., Li, W., Zhang, M.G., Zhou, Y. And Tao, K.Y., “Preparation and catalytic properties of amorphous alloys in hydrogenation of sulfolene”, Appl. Catal. A: Gen. 246 (2003) 215.
Mahata, N. Cunha, A.F., Órfão J.J.M. and Figueiredo, J.L., “Hydrogenation of chloronitrobenzenes over filamentous carbon stabilized nickel nanoparticles”, Catal. Commun. 10 (2009) 1203.
Mavrikakis, M., Stoltze, P., Norskov, J. K., “Making gold less noble” Catal. Lett., 64 (2000) 101.
Margitfalvi, J. L., Fási, A., Hegedűs, A. M., Lónyi, F., Gőbölös, F. S., Bogdanchikova, S. N., “Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation” Catal. Today 72 (2002) 157.
C. Milone, M.L. Tropeano, G. Gulino, G. Neri, R. Ingoglia and S. Galvagno, “Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts” Chem. Commun. (2002) 868
Mohr, C., Hofmeister, H., Lucas, M. and Claus, P., “Gold-Katalysatoren für die partielle Hydrierung von Acrolein ” Chem. Ing. Tech. 71 (1999) 869.
Mohr, C., Hofmeister, H., Lucas, M. and Claus, P., “Gold Catalysts for the Partial Hydrogenation of Acrolein”Chem. Eng. Technol. 23 (2000) 324.
Mohr, C., Hofmeister, H. and Claus, P., “The influence of real structure of gold catalysts in the partial hydrogenation of acrolein”J . Catal. 213 (2003) 86.
Mohr, C., Hofmeister, H., Radnik, J. and Claus, P “Identification of Active Sites in Gold-Catalyzed Hydrogenation of Acrolein” J. Am. Chem. Soc. 125 (2003 1905.
Moreau, F., Bond, G. C., Taylor, A. O., “Gold on titania catalysts for the oxidation of carbon monoxide: control pH during preparation with various gold content” J. Catal. 231 (2005) 105.
Moreau, F., Bond, G. C.,Taylor, A. O., “Gold on titania catalysts for the oxidation of carbon monoxide: control pH during preparation with various gold content” J. Catal. 231 (2005) 105.
Moreau, F., Bond, G. C., “CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component” Catal. Today 114 (2006) 362.
Moreau, F., Bond, G. C., Linden, B. V. D., Silberva, B. A. A., Makkee, M., “Gold supported on mixed oxides for the oxidation of carbon monoxide”, Appl. Catal. A: Gen. 347 (2008) 208.
S. Naito and M. Tanimoto, “Oxygen enhanced hydrogen exchange and hydrogenation over supported gold catalysts” J. Chem. Soc., Chem. Commun. (1988) 832.
Ning, J.B., Xu, J., Liu, J., Miao, H., Ma, H., Chen, C. Li, X.Q., Zhou, L.P. and Yu, W.Q., “ A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzenein ethanol”, Catal. Commun. 8 (2007) 1763.
Noller, H. and Lin, W.M., “Activity and selectivity of Ni=Cu/Al2O3 catalysts for hydrogenation of crotonaldehyde and mechanism of hydrogenation”, J. Catal. 85 (1984) 25.
Okumura, M., Tsubota, S., Haruta, M., “Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2” J. Mol. Catal. A: Chem. 199 (2003) 73.
Ozin, G. A., Prieto, J. G., “Pd (ɳ1-H2) and Pd (ɳ2-H2): ligand-free end-on and side-on bonded molecular dihydrogen complexes” J. Am. Chem. Soc.108 (1986) 3099.
Parks, G.L., Pease, M.L., Burns, A.W., Layman, K.A., Bussell, M.E., Wang, X., Hanson, J. and Rodriguez, J.A., “Characterization and hydrodesulfurization properties of catalysts derived from amorphous metal-boron materials”, J. Catal. 246 (2007) 277.
J. Radnik, C. Mohr and P. Claus, ” On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis” PCCP 5 (2003) 172.
Rajesh, B., Sasirekha, N., Lee, S.P., Kuo, H.Y., Chen, Y.W., “Investigation of Fe–P–B ultrafine amorphous nanomaterials: Influence of synthesis parameters on physicochemical and catalytic properties”, J. Mol. Catal. A: Chem., 289 (2008) pp. 69.
Rodolfo Zanella, Catherine Louis, Suzanne Giorgio, and Rayminde Touroude, “Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism”, Journal of Catal. 223 (2004) 328.
Rossignol, C., Arrii, S., Morfin, F., Piccolo, L., Caps, Rousset, J. L., “Selective oxidation of CO over model gold-based catalysts in the presence of H2” J. Catal. 230 (2005) 476.
Ruth, K., Hayes, M., Burch, R., Tsubota, S., Haruta, M., “The effects of SO2 on the oxidation of CO and propane non supported Pt and Au catalysts”, Appl. Catal. B: Environ, 24 (2000) 133.
Schubert, M. M., Hackenberg, S., Veen, A. C.,Muhler, M.,Plzak, V. R., Behm, J., “CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction” J. Catal. 197 (2001) 113.
Schubert, M. M., Plzak, V., Garvhe, J.,Behm, R. J., “Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas” Catal. Lett. 76 (2001) 143.
Schubert, M. M., Venugopal, A., Kahlich, M. J., Plzak, V., Behm, R. J., “Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3” J. Catal. 222 (2004) 32.
Schlesinger, H. I. and Brown, H. C., “New Developments in the chemistry of diborane and borohydrides, I. General Summary”, J. Am. Chem. Soc., 75, 186. Seo, G. and Chon, H., 1981. “Hydrogenation of furfural over copper-containing catalysts”, J. Catal. 67 (1953) 424.
Schimpf, S., Lucas, M., Claus, P., “Creating Value from Light Olefins—Production and Conversion”, Proceedings of DGMK-Conference, ISBN 3-931850-84-6 (2001) 97.
Sermon, P.A., Bond, G.C. and Wells, P.B., “Hydrogenation of alkenes over supported gold” J. Chem. Soc., Faraday Trans. I 75 (1979) 385
Shen, J., Hu, Z., Zhang, H., Li, Z. and Chen, Y., “The preparation of Ni-P ultrafine amorphous alloy particles by chemical reduction”, Appl. Phys. Lett. 59 (1991) 3545.
Shen, J., Hu, Z., Zhang, Q., Zhang, L. and Chen, Y., “Investigation of Ni-P-B ultrafine amorphous alloy particles produced by chemical reduction”, J. Appl. Phys. 71 (1992) 5217.
Shen, J.H. and Chen, Y.W., “Catalytic properties of bimetallic NiCoB nanoalloy catalysts for hydrogenation of p-chloronitrobenzene”, J. Mol. Catal. A: Chem. 273 (2007) 265
Stobinski,L., “Molecular and atomic deuterium chemisorption on thin gold films
at 78 K: an isotope effect” Appl. Surf. Sci. 103 (1996) 503.
Stobinski,L., Nowakowski, R., Dus, R., “Atomic hydrogen adsorption on thin discontinuous and continuous gold films- similarities and differences” Vaccum 48 (1997) 203.
Stobinski,L., R., Dus, “Atomic hydrogen solubility in thin gold films and its influence on hydrogen thermal desorption spectra from the surface
” Appl. Surf. Sci. 62 (1992) 77.
Stobinski,L., Zommer, L., Dus, R., “Molecular hydrogen interactions with discontinuous and continuous thin gold films”Appl. Surf. Sci. 141 (1999) 319.
Sun, S., Tsubaki, N., and Fujimoto, K., “The reaction performances and characterization of Fischer–Tropsch synthesis Co/SiO2 catalysts prepared from mixed cobalt salts”, Appl. Catal. A Gen. 202 (2000) 121.
Tijani, A., Coq, B. and Figueras, F., “Hydrogenation of para-chloronitrobenzene over supported ruthenium-based catalysts”, Appl. Catal. 76 (1991) 255.
Tijani, A., Coq, B. and Figuéras, F., “Pt/γ-Al2O3 catalytic membranes vs. Pt on γ-Al2O3 powders in the selective hydrogenation of p-chloronitrobenzene”, J. Mol. Catal. 68 (1991) 331.
Tsubota, S., Cunningham, D. A. H., Bando, Y., Haruta, M., “Preparation of nanometer gold strongly interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO” Stud. Surf. Sci. Catal. 91 (1995) 227.
Vannice M.A., Sen, B., “Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum.” J. Catal. 115 (1989) 65.
Venezia, A. M., Pantaleo, G., Longo, A., Carlo, G. D., Casaletto, M. P., Liotta, F. L., Deganello, G., “Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts” J. Phys. Chem. B 109 (2005) 2821.
Wang, C. Y., Liu, C. Y., Zheng, X., Chen, J., Shen, T., “The surface chemistry of hybrid nanometer-sized particles: I. Photochemical deposition of gold on ultrafine TiO2 particles” Colloids Surf. A 131 (1998) 271.
Wang, D., Hao, Z., Cheng, D., Shi, X., Hu, C., “Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts” J. Mol. Catal. A: Chem. 200 (2003) 229.
Wang, M.G. Li, H.X. Wu, Y.D. and Zhang J., “Comparative studies on the catalytic behaviors between the Ni-B amorphous alloy and other Ni-based catalysts during liquid phase hydrogenation of acetonitrile to ethylamine”, Mat. Letters 57 (2003) 2954.
Wolf, A., Schüth, F., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts” Appl. Catal. A: Gen. 226 (2002) 1
Wood, B.J., and Wise, H., “The role of adsorbed hydrogen in the catalytic hydrogenation of cyclohexene” J. Catal. 5 (1966) 135
R.S. Yolles, B.J. Wood and H. Wise, “Hydrogenation of alkenes on gold” J. Catal. 21 (1971), pp. 66
Yamashita, H., Yoshikawa, H., Funabiki, T. and Yoshida, S., “Catalysis by amorphous metal alloy”, J. Chem. Soc. Faraday Trans.I. 82 (1986) 1771.
Yan, X., Liu, M., Liu, H. and Liew, K.Y., “Role of boron species in the hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts”, J. Mol. Catal. A: Chem. 169 (2001) 225-233.
Yan, X.H., Sun, J.Q., Wang, Y.W. and Yang, J.F., “A Fe-promoted Ni-P amorphous alloy catalyst (Ni-Fe-P) for liquid phase hydrogenation of m- and p-chloronitrobenzene”, J. Mol. Catal. A: Chem 252 (2006) 17.
Yan, X.H., Sun, J.Q., Xu, Y.H. and Yang, J.F., “Liquid-phase hydrogenation of chloronitrobenzene to chloroaniline over Ni-Co-B Amorphous Catalyst”, Chin. J. Catal. 27 (2006) 119.
Yu, Z. B., Qiao M. H., Li, H. X., Deng, J. F., “Preparation of amorphous Ni-Co-B alloys and the effect of cobalt on their hydrogenation activity”, Appl. Catal., A 163 (1997) 1.
Yu, Z.K., Liao, S.J., Xu, Y., Yang, B. and Yu, D.R., “ Hydrogenation of nitroaromatics by polymer-anchored bimetallic palladium-ruthenium and palladium-platinum catalysts under mild conditions“, J. Mol. Catal. A: Chem. 120 (1997) 247.
Zanella, R., Delannoy, L., Louis, C., “Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition–precipitation with NaOH and urea” Appl. Catal. A: Gen. 291 (2005) 62.
指導教授 陳郁文(Yu-Wen, Chen) 審核日期 2010-6-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明