博碩士論文 93344006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:18.191.223.23
姓名 黃新義(Hsin-Yi Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高分子樹脂改質應用於負型光阻之製備及性質探討
(Preparation and Characterization of Modified Binders Applied in Negative-type Photoresists)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要利用自由基聚合法製備一系列的高分子樹脂(polymer binder),探討高分子樹脂的各項物理特性,包括分子量、酸價、玻璃轉化溫度(Tg)、熱重損失溫度(Td)與化學結構等,再將高分子樹脂與交聯劑加入負型光阻中,經過微影製程後,形成柱狀體的間隔物(photo spacer),探討對於間隔物機械性質與圖形外觀的影響。
本論文包含三部份,第一部份主要為在固定使用高分子樹脂中,探討交聯劑或單體添加的效果。當添加7 wt.%聚二季戊四醇五丙烯酸酯(dipentaerythritol hexa-acrylate, DPHA) 的交聯劑於光阻配方中,間隔物擁有優異的機械特性(彈性回復力=80.7%)。在混合型系統中,最適化的配方比例為交聯劑(DPHA)固定10 wt.%之外,另外再添加2 wt.%的甲基丙烯酸正丁酯(n-butyl methacrylate, BuMA)或甲基丙烯酸苯甲酯(benzyl methacrylate, BzMA)或壓克力二氧化矽單體(acrylic-silica monomer, Pro-1264)於負型光阻中,可增加間隔物的機械性質。
第二部份主要採用自由基聚合四成份高分子樹脂,單體包括甲基丙烯酸(methacrylic acid, MAA)、苯乙烯(styrene)、甲基丙烯酸異冰片酯(isobornyl methacrylate, IBMA)、苯基馬來醯亞胺(n-phenylmelaimide, PMI),其中IBMA與PMI為具有環狀剛性結構的單體,結果顯示高分子樹脂的Tg與起始劑濃度、MAA單體比例等無明顯關聯,與剛性結構的單體(IBMA與PMI)比例組成有顯著的影響,PMI比例越高,高分子樹脂的Tg越高。高分子樹脂的Td與起始劑濃度、鏈轉移劑濃度、MAA單體比例等無明顯的關聯。另外,實驗發現當PMI比例提高時,熱重分析儀(thermal gravimetric analyzer)的圖形朝向較高溫度的區域移動。本實驗的高分子樹脂具備IBMA與PMI等剛性的結構,再加上含有多官能基的交聯劑(DPHA),經過黃光微影製程後,曝光區產生高強度的互穿網結構,讓間隔物呈現出優異的機械特性(彈性回復力=81.1%)。
第三部份將高分子樹脂與丙基異氰酸酯單體(isocyanurate)進行縮合反應,獲得具備光與熱交聯性質的新型高分子樹脂。結果顯示此新型高分子樹脂的Tg與丙基異氰酸酯單體的比例無明顯關聯,主要還是與本身高分子樹脂結構中的剛性鏈段(IBMA與PMI)有關聯。具備光交聯性質的新型高分子樹脂,經過微影製程後,高分子樹脂本身以及與交聯劑形成互穿網結構,能夠提升間隔物的彈性回復力約3-8%,並使間隔物呈現較為陡直的圓柱狀圖形。
摘要(英) A series of monomers were polymerized by free-radical polymerization and used as polymer binders in negative-type photoresists. Cylindrical patterns were found to be formed when the photoresists were applied on a glass substrate using a lithographic process. The characteristics (molecular weight, acid value, glass transition temperature, and thermal decomposition temperature) of the polymer binders and the mechanical properties and profile of the pattern formed in a photo spacer are discussed here.
The study was divided into three parts. In the first part, the mechanical properties (elastic recovery = 80.7%) of the patterns obtained by adding 7 wt.% of dipentaerythritol hexa-acrylate (DPHA) to the photo spacers were investigated. In the binary system, the superior mechanical properties of patterns and the optimum compositions were obtained by using 2 wt.% of acrylic monomers (n-butyl methacrylate or benzyl methacrylate or Pro-1264) in the photoresists with a fixed DPHA content of 10 wt.%.
In the second part, a series of cyclic monomers were polymerized by free-radical polymerization. For this, four-component polymer binders consisting of methacrylic acid (MAA), styrene, isobornyl methacrylate (IBMA), and phenylmelaimide (PMI) were used. The glass transition temperature (Tg) of the polymer binders was found to increase with the PMI content because of the rigid characteristics of the molecular structure of PMI. However, Tg of the polymer binders was largely independent of the initiator and MAA concentration for the range of values tested in this study. The thermal gravimetric analyzer curve of the binders shifted toward higher temperatures when the PMI content was increased. The patterns exhibited excellent mechanical properties, presumably due to the rigid characteristics of the molecular structures of PMI and IBMA.
In the third part, diallyl monoglycidyl isocyanurate (DA-MGIC) was reacted with the obtained polymer binders to synthesize a novel polymer binder with photo- and thermal-curing properties. Tg of the polymer binders was found to be independent of the DA-MGIC concentration for the range of values tested in this study. The results showed that the patterns exhibited excellent mechanical properties and the taper angle of the patterns became steep because of to the photo-curing, thermal-curing, and interpenetration network characteristics of the novel polymer binder in the photo spacer.
關鍵字(中) ★ 彈性回復力
★ 間隔物
★ 光阻劑
★ 高分子樹脂
關鍵字(英) ★ binder
★ photoresist
★ photo spacer
★ elastic recovery
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1前言 1
1-2研究目標與論文架構 2
1-3參考文獻 5
第二章 文獻回顧 7
2-1 TFT-LCD產業趨勢 7
2-2 TFT-LCD製程 10
2-3光阻劑 11
2-4間隔物 13
2-5高分子樹脂的應用文獻 15
第三章 交聯劑與添加壓克力單體對間隔物機械性質的影響 22
3-1前言 22
3-2實驗 24
3-2-1實驗藥品材料 24
3-2-2實驗儀器 25
3-2-3實驗方法 26
3-2-4性質測試 27
3-3結果與討論 29
3-3-1交聯劑含量對機械性質的影響 29
3-3-2壓克力單體對機械性質的影響 30
3-3-3壓克力單體對間隔物穿透度的影響 31
3-3-4壓克力單體對間隔物圖形的影響 32
3-4結論 44
3-5參考文獻 45
第四章 高分子樹脂之製備及機械性質的研究 48
4-1前言 48
4-2實驗 49
4-2-1實驗藥品材料 49
4-2-2實驗儀器 50
4-2-3實驗方法 51
4-2-4性質測試 53
4-3結果與討論 55
4-3-1高分子樹脂的物理特性 55
4-3-2高分子樹脂對機械性質的影響 61
4-3-3具備酸價之交聯劑對機械性質的影響 62
4-3-4高分子樹脂對間隔物圖形的影響 62
4-4結論 82
4-5參考文獻 83
第五章 具光交聯性質的高分子樹脂製備及機械性質的研究 85
5-1前言 85
5-2實驗 86
5-2-1實驗藥品材料 86
5-2-2實驗儀器 87
5-2-3實驗方法 88
5-2-4性質測試 90
5-3結果與討論 92
5-3-1新型高分子樹脂的物理特性 92
5-3-2新型高分子樹脂對機械性質的影響 97
5-3-3新型高分子樹脂對間隔物圖形的影響 98
5-4結論 116
5-5參考文獻 118
第六章 總結 120
發表文獻 123
Figure 2-1 Trends of FPD production value in the world. 8
Figure 2-2 Trends of FPD production value in Taiwan. 8
Figure 2-3 TFT-LCD size in different generations. 9
Figure 2-4 The TFT-LCD construction. 11
Figure 2-5 Positive and negative photoresist. 13
Figure 2-6 Conventional and new structure of spacer. 14
Figure 3-1 The material concept of the photo spacer and the formed inter-penetration network matrix. 35
Figure 3-2 The DUMH indenter. 36
Figure 3-3 The elastic recovery graph. 36
Figure 3-4 The compression graph. 37
Figure 3-5 Effect of the content of the DPHA monomer on elastic recovery. 38
Figure 3-6 Effect of the content of the acrylic monomer on elastic recovery. 39
Figure 3-7 Effect of the content of the acrylic monomer on compression. 40
Figure 3-8 Effect of the content of the acrylic monomer on surface hardness. 41
Figure 3-9 Effect of the content of the acrylic monomer on transmittance of pattern. 42
Figure 3-10 The SEM diagrams of the photo spacers (a)DPHA-100 (b)BuMA-30 (c)BzMA-30 (d)Pro1264-30. 43
Figure 4-1 Preparation of polymer binder, poly(MAA-STY-IBMA-PMI) by free radical polymerization. 67
Figure 4-2 The material concept of photo spacer and the formed inter-penetration network matrix. 68
Figure 4-3 DSC thermograms of polymer binders of group I containing various molar ratio of IBMA to PMI. 69
Figure 4-4 Effect of molar ratio of PMI to IBMA of polymer binder on Tg. 70
Figure 4-5 Effect of molar ratio of initiator (AIBN) of polymer binder on Tg. 71
Figure 4-6 Effect of molar ratio of chain transfer agent (DT) of polymer binder on Tg. 72
Figure 4-7 Effect of molar ratio of MAA of polymer binder on Tg. 73
Figure 4-8 DSC thermograms of polymer binders of group IV containing various molar ratio of MAA, and the group V containing various monomer of TMA. 74
Figure 4-9 TGA thermograms of polymer binders of group I containing various molar ratio of IBMA to PMI. 75
Figure 4-10 TGA thermograms of polymer binders of group V containing various monomer of TMA. 76
Figure 4-11 FTIR spectra of poly(MAA-STY-IBMA-PMI) binder. 77
Figure 4-12 FTIR spectra of monomer. 78
Figure 4-13 FTIR spectra of poly(MAA-STY-TMA-PMI) binder. 79
Figure 4-14 SEM diagrams of photo spacer of Run No.A1-A4 and No.B1-B4. 80
Figure 4-15 SEM diagrams of photo spacer of Run No.A4-A6 and No.B4-B6. 81
Figure 5-1 Preparation of polymer binder B with MA-DGIC monomer. 103
Figure 5-2 Preparation of polymer binder C with MA-DGIC monomer. 104
Figure 5-3 DSC thermograms of polymer binder C containing various molar ratio of isocyanurate monomer. 105
Figure 5-4 TGA thermograms of polymer binder B containing various molar ratio of isocyanurate monomer. 106
Figure 5-5 Effect of the molar ratio of isocyanurate to MAA monomer of binders on acid value. 107
Figure 5-6 FTIR spectra of olefinic C-H stretch. 108
Figure 5-7 FTIR spectra of DA-MGIC and MA-DGIC monomer. 109
Figure 5-8 FTIR spectra of binder B-MGIC(0.4). 110
Figure 5-9 1H-NMR spectra of Binder B-MGIC(0.4). 111
Figure 5-10 Effect of the molar ratio of isocyanurate to MAA monomer of binders on elastic recovery. 112
Figure 5-11 Effect of the molar ratio of isocyanurate to MAA monomer of binders on compression. 113
Figure 5-12 SEM diagrams of photo spacer of Run No. C0 to C3 and D0 to D3. 114
Figure 5-13 SEM diagrams of photo spacer of Run No. C4 to C6 and D4 to D6. 115
Table 2-1 Global plants of the next generation (>8G). 10
Table 3-1 The composition of the negative-type photoresists. 33
Table 3-2 Mechanical properties of photo spacer. 34
Table 4-1 Compositions of polymer binder. 64
Table 4-2 Properties of polymer binder. 65
Table 4-3 Mechanical properties of photo spacer. 66
Table 5-1 Compositions of polymer binder. 100
Table 5-2 Properties of polymer binder. 101
Table 5-3 Mechanical properties of photo spacer. 102
參考文獻 第二章
[1]陳逸民,光連光電產業與技術情報, PIDA, (2009).
[2]張文智,陳欽典,陳玠中,簡禎富,「TFT-LCD新廠面板尺寸決策分析」, (2005).
[3]田港朝光,橫山清一郎,SEMI Japan,TFT彩色液晶顯示器,游孟潔編譯,初版,全華圖書,台北縣,(2007年)。
[4]陳逸民,光連光電產業與技術情報, PIDA, (2009).
[5]莊達人,VLSI製造技術,3版,高立圖書,台北市,(1997年)。
[6] R. Dammel, Diazonaphthoquinone-Based Resists, SPIE, USA, (1993).
[7] R. J. Jeng, L. H. Chan, R. H. Lee, G. H. Hsiue, H. L. Chang, “Polyimide/Inorganic Interpenetrating Polymer Networks for Stable Secondorder Nonlinear Optics”, Journal of Macromolecular Science, 38, 1259-1274, (2001).
[8] S. Kubota, T. Moriwaki, T. Ando, A. Fukami, “Preparation of Positive Photoreactive Polyimides and Their Characterization”, Journal of Applied Polymer Science, 33, 1763-1775, (1987).
[9] M. Ueda, T. Nakayama, “A New Negative-Type Photosensitive Polyimide Based on Pole(hydroxyimide), a Cross-Linker, and a Photoacid Generator”, Macromolecules, 29, 6427-6431, (1996).
[10] T. Nishio, T. Iwabushi, H. Hamaguchi, T. Kajita, “Photosensitive Column Spacer Materials for Liquid Crystal Display Panels”, Journal of Photopolymer Science and Technology, 18, 11-16, (2005).
[11] H. S. Koo, M. Chen, C. H. Kang, and T. Kawai, “Study on Physical Properties of Organic Resist Spacers on Color Filters”, Japanese Journal of Applied Physics, 47, 4954-4957, (2008).
[12] M. Senoo, T. Okazawa, M. Suwa, “Photosensitive Composition, Cured Film Formed by it, and Element having the Cured Film”, TW Patent 200912544. (2009).
[13] H. Goto, K. Inomata, S. I. Iwanaga, 「感光性絕緣樹脂組成物及其應化物」, TW Patent 200510930. (2005).
[14]郭子菱,光連光電產業與技術情報, 「間隔物市場發展及趨勢」, PIDA, (2007).
[15] T. Nishio, T. Iwabushi, H. Hamaguchi, T. Kajita, “Photosensitive Column Spacer Materials for Liquid Crystal Display Panels”, Journal of Photopolymer Science and Technology, 18, 11-16, (2005).
[16]李榮哲,「LCD彩色濾光片材料」,工業技術,第十卷,第3期,166-180, (2002).
[17] R. W. Sabnis, “Color Filter Technology for Liquid Crystal Displays”, Displays, 20, 119-129, (1999).
[18] T. Sumino, A. Inoue, “Photosensitive Resin Composition and Liquid Crystal Display Color Filter”, US Patent 6,680,763. (2004).
[19] K. Nakamura, S. Sega, “High Photo-Sensitivity Curable Resin, Photo-Curable Resin Composition, Production Method thereof, Color Filter and Liquid Crystal Display Panel”, US Patent 6,582,862. (2003).
[20] T. Ikeda, F. Shinozaki, H. Misz, Y. Aotani, “Light-Sensitive Resin Mass and Its Use in Forming Metal Images”, US Patent 4,139,391. (1979).
[21] M. Sato, F. Shinozaki, “Method of Forming Spacer for Use in Liquid Crystal Panel”, US Patent 5,593,802. (1997).
[22] T. Nishio, T. Iwabushi, H. Hamaguchi, T. Kajita, “Photosensitive Column Spacer Materials for Liquid Crystal Display Panels”, Journal of Photopolymer Science and Technology, 18, 11-16, (2005).
[23] H. S. Chae, and Y. H. Park, “Effect of Glass Transition Temperature on Compression and Elastic Properties of Poly(Meth)Acrylate Copolymer Thin Films and their Photoresist Patterns”, Molecular Crystals and Liquid Crystals, 463, 203-212, (2007).
[24] H. S. Koo, M. Chen, C. H. Kang, and T. Kawai, “Study on Physical Properties of Organic Resist Spacers on Color Filters”, Japanese Journal of Applied Physics, 47, 4954-4957, (2008).
[25] S. Takahashi, M. Hayashida, T. Ogata, T. Nonaka, S. Kurihara, “Study on Cross-Linking Reaction between Acrylic Resin and Epoxy Derivative in Over Coating Layer Materials for TFT Panel”, Polymers for Advanced Technologies, 19, 846-851, (2008).
[26] C. R. E. Mansur, R. M. I. B. Tavares, and E. E. C. Monteiro, “Thermal Analysis and NMR Studies of Methyl Methacrylate (MMA)-Methacrylic Acid Copolymers Synthesized by an Unusual Polymerization of MMA”, Journal of Applied Polymer Science, 75, 495-507, (2000).
[27] S.Krause, J. J. Gormley, N. Roman, J. A. Shetter, and W. H. Watanabe, “Glass Temperatures of Some Acrylic Polymers”, Journal of Polymer Science Part A: Polymer Chemistry, 3, 3573-3586, (1965).
[28] J. Brandrup, and E. H. Immergut, Polymer Handbook, 3rd ed., Wiley: New York. (1989).
[29] T. Iijima, K. Ohnishi, W. Fukuda, and M. Tomoi, “Modification of Bismaleimide Resin with N-Phenylmaleimide-Styrene-p-Hydroxystyrene and N-Phenylmaleimide-Styrene-p-Allyloxystyrene Terpolymers”, Journal of Applied Polymer Science, 65, 1451-1461, (1997).
[30] S. Morishita, R. Shoda, K. Ida, A. Kado, “Radiosensitive Composition for Forming Pigment Layer, Color Filter and Colored Liquid Crystal Display Element”, CN Patent 101324753, (2008).
[31] S. Morishita, K. Yoda, “Liquid Crystal Displays, their Color Filters, Radiation-Sensitive Compositions for their Color Layer Formation”. JP Patent 2007316485, (2007).
[32] S. Morishita, K. Yoda, “Photosensitive Color Resin Composition for Color Filters in Color Liquid Crystal Displays”, JP Patent 2007316506, (2007).
[33] S. Morishita, K. Yoda , “Photosensitive Resin Composition for Fabricating Color Layers of Color Filters in Liquid Crystal Displays”, JP Patent 2007264377, (2007).
[34] M. M. Skoultchi, N. V. Merlo, “Acrylic Adhesive Compositions and Organoboron Initiator System”, US Patent 5,106,928, (1992).
[35] H. M. Lin, S. Y. Wo, H. D. Hwu, L. C. Chang, “A Light-Sensitive Resin Composition”, TW Patent I245973. (2002).
[36] Y. Yoshimoto, “Color filters, Durable Films with Low Dielectric Constant therefor, and Curable Resin Compositions therefor”, JP Patent 2006028455. (2006).
第三章
[1] A. Kumano, “Material Design for Application to High Performance LCDs”, Journal of Photopolymer Science and Technology, 14, 23-28, (2001).
[2] R. W. Sabnis, “Color Filter Technology for Liquid Crystal Displays”, Displays, 20, 119-129, (1999).
[3] T. Sumino, A. Inoue, “Photosensitive Resin Composition and Liquid Crystal Display Color Filter”, US Patent 6,680,763. (2004).
[4] K. Nakamura, S. Sega, “High Photo-Sensitivity Curable Resin, Photo-Curable Resin Composition, Production Method thereof, Color Filter and Liquid Crystal Display Panel”, US Patent 6,582,862. (2003).
[5] T. Ikeda, F. Shinozaki, H. Misz, Y. Aotani, “Light-Sensitive Resin Mass and its Use in Forming Metal Images”, US Patent 4,139,391. (1979).
[6] M. Sato, F. Shinozaki, “Method of Forming Spacer for Use in Liquid Crystal Panel”, US Patent 5,593,802. (1997).
[7] T. Nishio, T. Iwabushi, H. Hamaguchi, T. Kajita, “Photosensitive Column Spacer Materials for Liquid Crystal Display Panels”, Journal of Photopolymer Science and Technology, 18, 11-16, (2005).
[8] H. S. Chae, and Y. H. Park, “Effect of Glass Transition Temperature on Compression and Elastic Properties of Poly(Meth)Acrylate Copolymer Thin Films and their Photoresist Patterns”, Molecular Crystals and Liquid Crystals, 463, 203-212, (2007).
[9] H. S. Koo, M. Chen, C. H. Kang, and T. Kawai, “Study on Physical Properties of Organic Resist Spacers on Color Filters”, Japanese Journal of Applied Physics, 47, 4954-4957, (2008).
[10] S. Takahashi, M. Hayashida, T. Ogata, T. Nonaka, S. Kurihara, “Study on Cross-linking Reaction between Acrylic Resin and Epoxy Derivative in Over Coating Layer Materials for TFT Panel”, Polymers for Advanced Technologies, 19, 846-851, (2008).
[11] S. Ahmad, S. Zulfiqar, “Synthesis, Characterization and Thermal Degradation of Glycidyl Methacrylate-α-Methyl Styrene Copolymers”, Polymer Degradation and Stability, 76, 173-177, (2002).
[12] T. S. Cheng, M. H. Wu, W. S. Weng, H. Chen, “Synthetic Study and Material Applications for a Positive Photo Resist of the Acrylic Series”, Materials Letters, 57, 753-760, (2002).
[13] C. K. Lee, T. M. Don, W. C. Lai, C. C. Chen, D. J. Lin, “Preparation and Properties of Nano-Silica Modified Negative Acrylate Photoresist”, Thin Solid Films, 516, 8399-8407, (2008).
[14] C. K. Lee, T. M. Don, D. J. Lin, C. C. Chen, L. P. Cheng, “Characterization of Acrylic Copolymers Applied in Negative-Type Photoresist via a Ternary Composition Diagram”, Journal of Applied Polymer Science, 109, 467-474, (2008).
[15] H. S. Chae, Y. H. Park, “Effect of Glass Transition Temperature on Compression and Elastic Properties of Poly(Meth)Acrylate Copolymer Thin Films and their Photoresist Patterns”, Molecular Crystals and Liquid Crystals, 463, 203-212, (2007).
[16] D. J. Lin, T. M. Don, C. C. Chen, B. Y. Lin, C. K. Lee, L. P. Cheng, “Preparation of a Nanosilica-Modified Negative-Type Acrylate Photoresist”, Journal of Applied Polymer Science, 107, 1179-1188, (2008).
[17] S. T. Hwang, Y. B. Hahn, K. S. Nahm, Y. S. Lee, “Preparation and Characterization of Poly(MSMA-co-MAA)-TiO2/SiO2 Nanocomposites Using the Colloidal TiO2/SiO2 Particles via Blending Method”, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 259, 63-69, (2005).
[18] Y. Y. Yu, C. Y. Chen, W. C. Chen, “Synthesis and Characterization of Organic-Inorganic Hybrid Thin Films from Poly(Acrylic) and Monodispersed Colloidal Silica”, Polymer, 44, 593-601, (2003).
[19] A. Ninomiya, H. Yoshimura, “Synthesis and Photosensitivity of Acryloylmorpholine Copolymers with a Pendant (Meth)acryloyl Group”, Journal of Applied Polymer Science, 87, 684-692, (2003).
[20] C. D. Diakoumakos, I. Raptis, A. Tserepi, P. Argitis, “Free-Radical Synthesis of Narrow Dispersed 2-Hydroxyethyl Methacrylate-Based Tetrapolymers for Dilute Aqueous Base Developable Negative Photoresists”, Polymer, 43, 1103-1113, (2002).
第四章
[1] A. Kumano, “Material Design for Application to High Performance LCDs”, Journal of Photopolymer Science and Technology, 14, 23-28, (2001).
[2] R. W. Sabnis, “Color Filter Technology for Liquid Crystal Displays”, Displays, 20, 119-129, (1999).
[3] C. R. E. Mansur, R. M. I. B. Tavares, and E. E. C. Monteiro, “Thermal Analysis and NMR Studies of Methyl Methacrylate (MMA)-Methacrylic Acid Copolymers Synthesized by an Unusual Polymerization of MMA”, Journal of Applied Polymer Science, 75, 495-507, (2000).
[4] S.Krause, J. J. Gormley, N. Roman, J. A. Shetter, and W. H. Watanabe, “Glass Temperatures of Some Acrylic Polymers”, Journal of Polymer Science Part A: Polymer Chemistry, 3, 3573-3586, (1965).
[5] J. Brandrup, and E. H. Immergut, Polymer Handbook, 3rd ed., Wiley: New York. (1989).
[6] T. Iijima, K. Ohnishi, W. Fukuda, and M. Tomoi, “Modification of Bismaleimide Resin with N-Phenylmaleimide-Styrene-p-Hydroxystyrene and N-Phenylmaleimide-Styrene-p-Allyloxystyrene Terpolymers”, Journal of Applied Polymer Science, 65, 1451-1461, (1997).
[7] S. Morishita, R. Shoda,K. Ida, A. Kado, “Radiosensitive Composition for Forming Pigment Layer, Color Filter and Colored Liquid Crystal Display Element”, CN Patent 101324753, (2008).
[8] S. Morishita, K. Yoda, “Liquid Crystal Displays, their Color Filters, Radiation-Sensitive Compositions for their Color Layer Formation”. JP Patent 2007316485, (2007).
[9] S. Morishita, K. Yoda, “Photosensitive Color Resin Composition for Color Filters in Color Liquid Crystal Displays”, JP Patent 2007316506, (2007).
[10] S. Morishita, K. Yoda , “Photosensitive Resin Composition for Fabricating Color Layers of Color Filters in Liquid Crystal Displays”, JP Patent 2007264377, (2007).
[11] M. M. Skoultchi, N. V. Merlo, “Acrylic Adhesive Compositions and Organoboron Initiator System”, US Patent 5,106,928, (1992).
[12]中國國家標準, “Methods of Test for Acid Value, Saponification Value, Ester Value, Iodine Value, Hydroxyl Value and Unsaponificable Matter of Chemical Products”, CNS 13568, (1995).
[13] C. K. Lee, T. M. Don, D. J. Lin, C. C. Chen, and L. P. Cheng, “Characterization of Acrylic Copolymers Applied in Negative-Type Photoresist via a Ternary Composition Diagram”, Journal of Applied Polymer Science, 109, 467-474, (2008).
[14] Integrated Spectral Database System of Organic Compounds (Data were obtained from the National Institute of Advanced Industrial Science and Technology (Japan).
[15] Infrared spectral data from the Bio-Rad/Sadtler IR Data Collection was obtained from Bio-Rad Laboratories, Philadelphia, PA (US).
[16] H. S. Chae, and Y. H. Park, “Effect of Glass Transition Temperature on Compression and Elastic Properties of Poly(Meth)Acrylate Copolymer Thin Films and their Photoresist Patterns”, Molecular Crystals and Liquid Crystals, 463, 203-212, (2007).
第五章
[1] R. W. Sabnis, “Color Filter Technology for Liquid Crystal Displays”, Displays, 20, 119-129, (1999).
[2] T. Sumino, and A. Inoue, “Photosensitive Resin Composition and Liquid Crystal Display Color Filter”, US Patent 6,680,763. (2004).
[3] K. Nakamura, and S. Sega, “High Photo-Sensitivity Curable Resin, Photo-Curable Resin Composition, Production Method thereof, Color Filter and Liquid Crystal Display Panel”, US Patent 6,582,862. (2003).
[4] H. M. Lin, S. Y. Wo, H. D. Hwu, L. C. Chang, “A Light-Sensitive Resin Composition”, TW Patent I245973. (2002).
[5] Y. Yoshimoto, “Color filters, Durable Films with Low Dielectric Constant therefor, and Curable Resin Compositions therefor”, JP Patent 2006028455. (2006).
[6]中國國家標準, “Methods of Test for Acid Value, Saponification Value, Ester Value, Iodine Value, Hydroxyl Value and Unsaponificable Matter of Chemical Products”, CNS 13568, (1995).
[7] H. Kura, H. Oka, J. L. Birbaum, T. Kikuchi, “Study on Photobase Generation from α-Aminoketones: Photocrosslinking of Epoxides with Carboxylic Acids”, Journal of Photopolymer Science and Technology, 13, 145-152. (2000).
[8] A. Vora, M. J. Nasrullah, D. C. Webster, “Synthesis and Characterization of Novel Epoxy- and Oxetane-Functional Reversible Addition-Fragmentation Chain Transfer Agents”, Macromolecules, 40, 8586-8592. (2007).
[9] D. K. Chattopadhyay, S. S. Panda, K. V. S. N. Raju, “Thermal and Mechanical Properties of Epoxy Acrylate/Methacrylates UV Cured Coatings”, Progress in Organic Coatings, 54, 10-19. (2005).
[10] R. M. Silverstein, G. C. Bassler, Spectrometric Identification of Organic Compound, 4th Edition. Wiley.
[11] V. Gimenez, J. A. Reina, A. Mantecon, V. Cadiz, “Unsaturated Modified Poly(Vinyl alcohol). Crosslinking through Double bonds”, Polymer, 40, 2759-2767. (1999).
[12] G. E. Yu, F. Heatley, C. Booth, T. G. Blease, “Anionic Copolymerisation of Ethylene Oxide and Propylene Oxide. Investigation of Double-Bond Content by NMR Spectroscopy”, European Polymer Journal, 31, 589-593. (1995).
指導教授 陳暉(Hui Chen) 審核日期 2010-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明