博碩士論文 973204052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.223.159.152
姓名 陳柏伍(Po-wu Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用高溫合成具辨識磺胺二甲嘧啶能力之分子拓印高分子
(Preparation of sulfamethazine-imprinted polymer at high temperature)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用高溫180℃在四乙氧基矽烷(TEOS)或一甲基三乙氧基矽烷(MTEOS)單體存在下行溶膠-凝膠程序(sol-gel process)來製備磺胺二甲嘧啶(SMZ)分子拓印高分子。
實驗系統主要分為兩部分,首先第一部分選用TEOS為功能性單體進行溶膠-凝膠反應製備分子拓印高分子,並以兩階段升溫(200℃與300℃)之方式行進一步反應,最後再利用高溫鍛燒之方式移除SMZ。結果顯示透過改變進一步反應之時間可以提升SMZ之選擇率(α)從1.47 至1.82。此外藉由改變標準液之pH值來控制模板分子與相似物(磺胺甲噁唑,簡稱SMO)原始狀態之比例更可以大幅提升分子拓印高分子之α值從1.82 至23.89,以及較高之SMZ吸附量(AdSMZ),其AdSMZ與α之乘積(f)值最高可達102.72。
第二部分選用MTEOS為功能性單體來製備分子拓印高分子,並利用甲醇萃取之方式移除SMZ。結果顯示藉由調整溶液中SMZ之含量可以有效提升分子拓印高分子之AdSMZ與α值。此外調整溶液在高壓反應器內之填充比例,可以讓分子拓印高分子更具有多孔性使AdSMZ與α值提升。而藉由改變標準液之pH值來控制模板分子與相似物原始狀態之比例也可提升分子拓印高分子之辨識能力,但若以吸附能力與辨識能力兩者綜合來比較,未調整標準液之pH值效果比較好,其f值可達0.99。
比表面積測試儀(BET)之結果顯示以MTEOS為單體製備之MIP其比表面積為5.44(m2/g) , 以TEOS 為單體製備之MIP 其比表面積高達767.25(m2/g),表示以TEOS為單體製備之MIP較具有多孔性之結構,也有較高之AdSMZ、α值與f值。
摘要(英) Preparation of sulfamethazine (SMZ)-molecular imprinted polymer (MIP)composed of tetraethoxysilane (TEOS) or methyltriethoxysilane (MTEOS) bysol-gel method in high temperature (180℃) has been developed.
This study devided the experiment into two parts. For the first part, MIP was prepared by sol-gel method which using TEOS as a functional monomer, and then further reaction was carried out by increasing temperature in two steps (200℃ and 300℃). Finally, SMZ was removed by calcination method. The results showed that selectivity (α) of MIP was promoted from 1.47 to 1.82. Besides, it could change the ratio of original state of template and analogy (Sulfamethoxazole, SMO) by adjusting the pH value of standard solution. Therefore, α and f value were increased significantly from 1.82 to 23.89 and 4.69 to 98.43, respectively because of different ratio of SMZ and SMO.
For the second part, MIP was prepared by using MTEOS as a functional monomer, and SMZ was removed by extraction method. The results showed that MIP had better performaence by increasing the ratio of SMZ in reaction system. In addition, the higher porosity of MIP could be obtained by decreasing the ratio of filled volume of reactor. And adsorption of SMZ (AdSMZ) and α value of MIP were promoted becaused of porosity of MIP. It could also increase α value by adjusting the pH value of standard solution. Considering both AdSMZ and α value, the better performance of MIP could be achieved on the condition of non-adjusted standard solution, and MIP’s f value is 0.99.
The results of surface area analyzer (BET) showed that the specific surface area of MIP prepared by TEOS and MTEOS were 767.25(m2/g) and 5.44(m2/g), respectively. It meant MIP prepared by TEOS was more porous and had higher AdSMZ, α and f value than by MTEOS.
關鍵字(中) ★ 溶膠-凝膠
★ 分子拓印高分子
★ 吸附量
★ 選擇率
關鍵字(英) ★ sol-gel
★ molecular imprinted polymer
★ adsorption
★ selectivity
論文目次 摘要................................................................... I
Abstract............................................................... II
致謝................................................................... III
目錄................................................................... IV
表目錄................................................................. VI
圖目錄................................................................. VIII
符號說明............................................................... XI
第一章 緒論............................................................ 1
1-1 分子拓印高分子之理論與發展......................................... 1
1-2 分子拓印之形式..................................................... 5
1-3 溶膠-凝膠技術之簡介................................................ 12
1-3-1 含水量對溶膠-凝膠程序之影響...................................... 14
1-3-2 反應系統pH值對溶膠-凝膠程序之影響................................ 14
1-4 磺胺劑之介紹....................................................... 18
1-5 研究動機與目的..................................................... 19
第二章 實驗............................................................ 20
2-1 實驗藥品........................................................... 20
2-2 實驗儀器........................................................... 22
2-3 無機分子拓印高分子之製備........................................... 23
2-3-1 以四乙氧基矽烷為單體製備分子拓印高分子........................... 23
2-3-2 以一甲基三乙氧基矽烷為單體製備分子拓印高分子..................... 23
2-3-3 競爭吸附測試..................................................... 23
2-4 儀器分析........................................................... 27
2-4-1 高效能液相層析儀測試條件......................................... 27
2-4-2 傅立葉轉換紅外線光譜儀(FTIR)測試條件............................. 27
2-4-3 熱重分析儀(TGA)測試條件.......................................... 27
2-4-4 比表面積測試儀(BET)測試條件...................................... 27
第三章 結果與討論...................................................... 28
3-1 四乙氧基矽烷製備分子拓印高分子..................................... 29
3-1-1 含水量(R值)對分子拓印高分子之影響................................ 29
3-1-2 進一步反應時間對分子拓印高分子之影響............................. 37
3-1-2-1 進一步反應溫度之決定........................................... 37
3-1-2-2 進一步反應時間對於分子拓印高分子辨識能力與吸附能力之影響....... 41
3-1-3 標準液pH值對分子拓印高分子之影響................................. 46
3-1-4 有無添加模板分子對分子拓印高分子之影響........................... 52
3-2 一甲基三乙氧基矽烷製備分子拓印高分子............................... 54
3-2-1 模板分子之含量對分子拓印高分子之影響............................. 54
3-2-1 含水量對分子拓印高分子之影響..................................... 59
3-2-3 不同移除模板方式對分子拓印高分子之影響........................... 63
3-2-4 反應系統之pH值對於製備分子拓印高分子之影響....................... 68
3-2-5 反應器填充之體積對於製備分子拓印高分子之影響..................... 73
3-2-6 進一步反應對於製備分子拓印高分子之影響........................... 78
3-2-6-1 進一步反應溫度之決定........................................... 78
3-2-6-2 進一步反應時間對於分子拓印高分子辨識能力與吸附能力之影響....... 82
3-2-7 標準液之pH值對於對分子拓印高分子之影響........................... 85
3-2-8 有無添加模板分子對於製備分子拓印高分子之影響..................... 90
3-3 論文結果與本實驗室相關研究之比較................................... 93
第四章 結論............................................................ 97
參考文獻............................................................... 100
參考文獻 [1] E. Fischer, “Einfluss der configuration auf die wirkung derenzyme”, UBer. Dt. Chem. Ges., Vol 27, pp. 2985–1993, 1894.
[2] 許玉瑩,「利用矽氧烷化合物製備分子拓印高分子」,國立中央大學,碩士論文,民國94年。
[3] M. V. Polyakov, Z. F. Khim. “Adsorption properties of silica gel and its structure”, URuss. J. Phys. Chem., Vol 2, pp. 799–805, 1931.
[4] L. Pauling, “A theory of the structure and process of formation of antibodies”, UJ. Am. Chem. Soc.U, Vol 62, pp. 2643–2657, 1940.
[5] F. H. Dickey, “The Preparation of Specific Adsorbents”, PU. Natl. Acad. Sci. USA.U, Vol 35, pp. 227–229, 1949.
[6] G. Wulff, A. Sarhan, “The use of polymers with enzyme-analogous structures for the resolution of racemates”, UAngew. Chem. Int. Edit.U, Vol 11, pp. 341, 1972.
[7] G. Wulff, et al. “Enzyme-analogue Built Polymers, 5. On the Synthesis of Polymers Containing Chiral Cavities and Their Use for the Resolution of Racemates”, Makromol. Chem., Vol 178, pp. 2817–2824, 1977.
[8] L. Andersson, et al., “Imprinting of amino acid derivatives in macroporous polymers”, UTetrahedron Lett., Vol 25, pp. 5211–5214, 1984.
[9] Kenneth J. Shea, D.A. Spivak, and B. Sellergren, “Polymer Complements to Nucleotide Bases. Selective Binding of Adenine Derivatives to Imprinted Polymers”, UJ. Am. Chem. Soc.U, Vol 115, pp. 3368–3369, 1993
[10] F. L. Dickert, et al., “Molecular imprints as artificial antibodies- a new generation of chemical sensors”, USensor. Actuat. B-Chem.U, Vol 65, pp. 186–189, 2000.
[11] M. Lahav, et al., “Tailored chemosensors for chloroaromatic acids using molecular imprinted TiO2 thin films on ion-sensitive field-effect transistors”, UAnal. Chem.U, Vol 73, pp. 720–723, 2001.
[12] G. Vlatakis, et al., “Drug assay using antibody mimics made by molecular imprinting”, UNatureU, Vol 361, pp. 645–647, 1993.
[13] D. A. Spivak, K. J. Shea, “Binding of nucleotide bases by imprinted polymers”, UMacromoleculesU, Vol 31, pp. 2160–2165, 1998.
[14] O. Ramström, K. Mosbach, “Synthesis and catalysis by molecularly imprinted materials”, UCurr. Opin. Chem. Biol.U, Vol 3, pp. 759–764, 1999.
[15] A. S. Abu-Surrah, Y. S. Al-Degs, “A molecular imprinted polymer via a salicylaldiminato-based cobalt(III) complex: A highly selective solid-phase extractant for anionic reactive dyes”, UJ. Appl. Polym. Sci.U, Vol 117, pp.2316–2323, 2010.
[16] M. Gallego-Gallegos, et al., “A new application of imprinted polymers: Speciation of organotin compounds”, UJ. Chromatogr. AU, Vol 1217, pp.3400–3407, 2010.
[17] Z. Lin, et al., “Organic-inorganic hybrid silica as supporting matrices for selective recognition of bovine hemoglobin via covalent immobilization”, UJ. Sep. Sci.U, Vol 32, pp.3980–3987, 2009.
[18] R. Rajkumar, et al., “Thermometric MIP sensor for fructosyl valine”, UBiosens. Bioelectron.U, Vol 23 pp. 1195–1199, 2003.
[19] G. Wulff, S. Schauhoff, “Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements”, UJ. Org. Chem.U, Vol 56, pp. 395–400, 1991.
[20] P. Curcio, et al., “Semi-covalent surface molecular imprinting of polymers by one-stage mini-emulsion polymerization: glucopyranoside as a model analyte”, UMacromol. BiosciU., Vol 9, pp. 596–604, 2009.
[21] Buhani, et al., “Production of metal ion imprinted polymer from mercapto-silica through sol-gel process as selective adsorbent of cadmium”, UDesalinationU, Vol 251 pp. 83–89, 2010.
[22] 鍾佳芸,「溶膠-凝膠法製備分子拓印高分子」,國立中央大學,碩士論文,民國92年。
[23] 李松泉,「以矽氧烷化合物製備溶膠—凝膠分子拓印高分子與其性質之研究」,國立中央大學,博士論文,民國92年。
[24] 莊峯琳,「利用溶膠—凝膠法製備磺胺二甲嘧啶無機分子拓印高分子」,國立中央大學,專題論文,民國97年。
[25] L. C. Klein, “Sol-gel processing of silicates”, UAnn. Rev. Mater. SciU., Vol 15, pp. 227–48, 1985.
[26] D. Y. Nadargi, A. V. Rao, “Methyltriethoxysilane: new precursor for synthesizing silica aerogels”, UJ. Alloy. Compd.U, Vol 467, pp. 397–404, 2009.
[27] A. M. Siouffi, “Silica gel-based monoliths prepared by the sol–gel method: facts and figures”, UJournal of Chromatography AU, Vol 1000, pp.801–818, 2003.
[28] 彭均莉,「以溶膠—凝膠法製備磺胺二甲嘧啶無機分子拓印高分子」,國立中央大學,碩士論文,民國97年。
[29] 魏宏森,「高選擇率或吸附量咖啡因拓印高分子之製備」,國立中央大學,博士論文,民國95年。
指導教授 陳暉(Hui Chen) 審核日期 2010-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明