摘要(英) |
Avoiding floods and building dikes is the main river protection policy in the early period of Taiwan. However, nowadays environment protection becomes an important issue and the Ecological Engineering Method was taken into account for the protection of river. When renovating rivers, people not only have to consider the safety and wealth of humans but also the protection of environment and ecology. Before when people renovating rivers, engineers do not consider the living creatures in rivers and their needs, it’s possible to affect the balance of ecological system and also reduce the variety of habitats. According to these reasons below, this research report is probing the positive and negative effects of the hydraulic structures to the living creatures in river.
The research chose Fazih River as the study area and the acrossocheilus paradoxus as the target fish. HEC-RAS and River2D were combined to produce a simulation and to design Groundsill、Spur dike into three different sizes : short Spur dike(20m)、 medium Spur dike(30m)、long Spur dike(40m)、Groundsill(1m)、Groundsill(1.25m) and Groundsill(1.5m). The Weighted Usable Area (WUA) by making a simulation of the twenty four samples were estimated.
When the flow Q=4.6cms~130cms is added, the WUA of Spur dike is very close to the original; when the flow Q=160cms~590cms, the WUA of Spur dike is lower than the WUA of original river. When the flow Q=4.6cms~220cms, the WUA of Groundsill is higher than the WUA of original river; when the flow Q=238cms~590cms, the WUA of Groundsill and the WUA of original river differences are not big. The result shows that when the flow is in the low part, the influence of the Groundsill is positive. And in the high flow section, no matter if it’s short, medium or long Spur dike, the WUA is lower than the original or groundsill one.
The determined standards are 5%, 3% and 1.5%. As for the spur dike, the smaller the determination standard, the bigger the influenced area; and the longer the spur dike’’s length, the further the influenced area. As for groundsill, the three criteria have shown that the influences area in upstream has exceeded the studying area by 60 meters; the influenced area in downstream expands along with the reduction of critiria.
|
參考文獻 |
1. 于錫亮,「淺談流量與棲地關係的方法學」,自然保育季刊(19),p.15~19,(1997) 。
2. 中村俊六,「自然環境保全之實施例」,土之基礎, 第47 期,p.41~46,(1999)。
3. 水環境研究中心http://www.ntut.edu.tw/~wwwwec/eco/eco_index.htm
4. 王永琳,「河道束縮對生態棲地之影響評估」,國立中央大學土木工程學系,碩士論文,(2009)。
5. 王信凱,「流量法應用於推估河川生態基流量之研究」,國立中興大學水土保持學系,碩士論文,(2000)。
6. 台灣省水利局,「防洪工程規劃講義」,台灣省水利局編,p.621~643,(1981)。
7. 池谷浩,砂防流路工之計畫和實務,(1977)。
8. 行政院農委會特有生物研究保育中心http://tesri.coa.gov.tw/show_index.php。
9. 行政院農業委員會,「水土保持技術規範」,行政院農業委員會編印,(1996) 。
10. 行政院環境環境保護署網站 http://www.epa.gov.tw/。
11. 余燕妮,「台灣河川特有魚種之分區適合度曲線研訂」,國立中央大學土木工程學系,碩士論文,(2006)。
12. 吳富春、李國昇,「集集共同攔河堰之環境生態基準流量評估」,農工七十水資源管理研討會,p.216~237,(1998)。
13. 吳瑞賢、毛振泰、溫博文、張楨驩,「台灣河川生態基準流量及魚類棲地分布之研究」,中國土木水利工程學刊,第16卷,第2期,p.301~314,(2004)。
14. 李訓煌、吳瑞賢、莊明德、陳有祺、溫博文、廖光正、周文杰、李德旺、張世倉,「河川棲地二維模式(River 2D)之應用研究(1/2)」,經濟部水利署水利規劃試驗所,(2007)。
15. 李訓煌、吳瑞賢、莊明德、陳有祺、溫博文、廖光正、周文杰、李德旺、張世倉,「河川棲地二維模式(River 2D)之應用研究(2/2)」,經濟部水利署水利規劃試驗所,(2008)。
16. 李德旺、邱健介、林維玲、于錫亮,「卑南溪流域高身鏟頜魚之分布與環境因子的關係」,中華林學季刊31(3),p.219~225,(1998)。
17. 汪靜明,「大甲溪水資源環境教育」,經濟部水資源局,P30~45,(2000)。
18. 汪靜明,「河川生態基流量設計及魚類棲地改善之理念」,環境教育季刊,p.49~69,(1998)。
19. 周文杰,「以水文流量資料估算生態基流量之探討-以中港溪為例」,水域生態研討會,中華大學,(4)p.1~16,(2001)。
20. 林信輝,「野溪自然生態工法評估指標及設計參考圖冊之建立期末報告書」,行政院農委會水土保持局,(2002)。
21. 林信輝、林德貴,「九二一震災重建區治山防災構造物運用自然生態工程之調查評估及新工法之研發計畫」,(2001)。
22. 林雲晛,「固床工水理特性之研究」,國立台灣大學生物環境系統工程學系,碩士論文,(2002)。
23. 林岳葆,「丁壩群於河川棲地改善之研究」,逢甲大學水利工程學系,碩士論文,(2006)。
24. 洪照男,「技師報」,台灣省土木技師公會 (645),(2009) 。
25. 高甲榮,「近自然治理-以景觀生態學為基礎的荒溪(野溪)治理工程」,北京:北京林業大學學報,(1999)。
26. 張君瑋,「利用河川棲地二維模式評估水工結構物對河川棲地之影響-以杉林溪為例」,中華大學土木與資訊工程學系,碩士論文(2007)。
27. 張則安,「固床工之間距研究」,國立中興大學水土保持學系,碩士論文,(1994)。
28. 陳正昌,「丁壩工對魚類棲地面積之影響-以蘭陽溪為應用案例」,國立台灣大學土木工程學系,碩士論文,(2003)。
29. 陳芳瑜,「台灣河川棲地型態之研究」,國立中央大學土木工程學系,碩士論文,(2007)。
30. 陳憲仁、呂榮進、吳祖陽、黃金山、陳義平、蔡萬宮、田巧玲,「治河與防洪」,中國土木水利工程學會,p.6-73~6-90,(1987)。
31. 曾晴賢,「鯉魚潭水庫士林水力發電工程士林壩下游河道最小生態維護放水量檢討工作」,中興工程顧問公司,(1997) 。
32. 游繁結,「固床工間距之調查與研究(二) 」,83 年度水土保持及集水區經營研究計畫成果彙編,p.505~523,(1995)。
33. 黃政達,「由動床試驗探討固床工之間距」,國立中興大學水土保持學系,碩士論文,(1995)。
34. 溫博文,「台灣中部河川生態棲地分佈特性及時空變化之研究」,國立中央大學土木工程學系,博士論文,(2005)。
35. 經濟部水利署網站 http://www.wra.gov.tw/。
36. 詹見平,「台中縣大甲溪魚類誌」,台中縣立文化中心,(1996)。
37. Bartschi,D.K.,“A habitat-discharge method of determining instream flows to protect fish habitat”, Proceedings of the symposium and speciality conference on instream flow needs,American Fisheries Society:P285~294, 1976.
38. Bovee,K.D.,“A guide to stream habitat analysis using the instream flow incremental methodology”, US Fish and Wildlife Service Biological Services Program, FWS/OBS82/26, 1982.
39. Forlong,R.G.,“Determining minimum flow for rivers in the Kapiti Coast disyrict”, Proceeding of the 1994 Limmologogical Society Conference, Limmological Society, Hamilton, 1994.
40. Jowett, I. G.,“A method for objectively identifying pool, run, and riffle habitats from physical measurements”, New Zealand Journal of Marine and Freshwater Research, 27:p.241~248, 1993.
41. Jowett, I. G.,“Instream Flow Methods,A Comparison of Approaches”, Regulated Rivers,Vol.13, p.115~127, 1997.
42. Lenzi, M.A.,“Stream bed stabilization using boulder check dams that mimic step-pool morphology features in Northern Italy”Geomorphology, Vol.45, p.243~260, 2002.
43. Leopold Luna B. et al.,“Fluvial processes in geomorphology”, San Francisco, W. H. Freeman and Company. , 1969.
44. Mitsch W. F. and Jorgensen S. E.,“Ecological Engineering”, John Wiley & Sons , Inc, 1988.
45. Moody, L.F.,“Friction Factors for Pipe Flow”, Transactions of theASME, p671-684, 1944.
46. Platts, W.S., W.F. Megahan, and G.W. Minshall.“ Method for evaluating stream, riparian, and biotic condition.” U.S. Forest and Range Experiment Station, General Technical Report INT-138, Ogden, Utah, USA. p98, 1983.
47. Steffler, P. and Blackburn, J. , River2D, Two-Dimensional Depth Averaged Model of River Hydrodynamicsand Fish Habitat, Introduction to Depth Averaged Modeling and User’s Manual. University of Alberta, 2002.
48. Tennant,D.L.,“Instream flow requirements for fish, wildlife,recreation and related environmental resources”, Fisheries, Vol. 1, No. 4, p6~p10, 1976.
49. U.S. Armey Corps of Engineers Hydraulogic Engineer Center, “HECRAS River Analysis System Hydraulic Reference Mannal”, Davis,CA., 1995.
50. USGS,2D Hydrodynamic/Habitat Modeling Workshop, National Conservation Training Center, March 11- 13, 2002.
|