博碩士論文 973202022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.128.198.21
姓名 汪栢靈(Pak-Leng Wong)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 橋梁極限破壞分析與耐震性能研究
(DYNAMIC ANALYSIS OF BRIDGES IN THE ULTIMATE STATE UNDER EARTHQUAKES)
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 應用多項式摩擦單擺支承之隔震橋梁研究★ 橋梁含多重防落裝置之極限狀態動力分析
★ 強震中橋梁極限破壞三維分析★ 隔震橋梁之最佳化結構控制
★ 跨越斷層橋梁之極限動力分析★ 塑鉸極限破壞數值模型開發
★ 橋梁直接基礎搖擺之極限分析★ 考量斷層錯動與塑鉸破壞之橋梁極限分析
★ Impact response and shear fragmentation of RC buildings during progressive collapse★ 應用多項式滾動支承之隔震橋梁研究
★ Numerical Simulation of Bridges with Inclined★ 橋梁三維極限破壞分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 依據過去地震經驗發現橋梁常遭受嚴重之損害,而橋梁支承裝置、橋柱之損壞與落橋所造成的損失更為嚴重。因此本研究主要探討含防止落橋裝置之不同支承型式橋梁於大地震時極限狀態的反應。
本研究採用新近發展之向量式有限元素(Vector Form Intrinsic Finite Element)為結構動力分析方法,VFIVE適用於處理大變形、大變位、材料非線性與剛體運動等問題,但過去VFIFE使用中央差分法處理雷利阻尼相關問題時會有數值發散現象,所以本文改採用隱式Newmark-β直接積分求解運動方程式,研提增量迭代計算程序,求得下一步時間之位移、速度與加速度反應,同時計算構件回復內與阻力內力,成功避免高度非線性反應時之發散情形。
本研究以一座六跨簡支梁橋、一座二單元三跨剛性支承連續梁橋和一座二單元三跨隔震支承連續梁橋為目標橋梁,經數值分析結果,三座橋梁無論有無裝設防落裝置,或是防落裝置連接兩相鄰上部結構亦或連接於上部結構與橋墩,均並未提高橋梁發生落橋之地表加速度,且發現剛性支承連續橋之耐震能力高於剛性支承簡支橋和隔震支承連續橋。
摘要(英) In the past extreme earthquake, observed from the damaged bridges, bearing failure, column failure and deck unseating caused a more serious loss. Therefore, it is full of curiosity that how large earthquake will cause a bridge to collapse and how the ultimate state will be. This study is aimed to analyze the ultimate situation of bridges with rigid bearing system and isolated bearing system through numerical analysis.
The Vector Form Intrinsic Finite Element (VFIFE), a new computational method is adopted in this study because the VFIFE has the superior in managing the engineering problems with material nonlinearity, discontinuity, large deformation and arbitrary rigid body motions of deformable bodies. In the past, VFIFE was used Central Different Method to be analysis method, there are numerical disperses when to solve the Rayleigh damping analysis. Implicit time integration method(Newmark-β) is adopted in VFIFE . Incremental formulation of the equation of motion is used to do iteration and to solve the response at next time step (i+1) including the displacement, velocity and acceleration. Furthermore, this calculation is also used to calculate the internal resultant force and the internal damping force exerted by the elements surrounding the particle.
Three types of bridges, a six-span simply-supported bridge, a continuous-span bridge with hinge and roller bearings and a continuous-span bridge with high-damping-rubber isolators, are analyzed. Through numerical simulation of three bridges with or without unseating prevention devices, the ultimate states are demonstrated and compared. The results show that the unseating prevention devices do not increase the safety of the studied bridges as expected and the performance of the continuous bridge with rigid bearings is better than simply-supported bridge the and isolated bridge to prevent unseating of the superstructure.
關鍵字(中) ★ 動力分析
★ 防止落橋裝置
★ 橋梁
★ 極限狀態
★ Newmark-β直接積分法
★ 向量式有限元素
關鍵字(英) ★ dynamic analysis
★ unseating prevention devices
★ bridge
★ ultimate state
★ Newmark-β method
★ VFIFE
論文目次 摘 要…………………………………………………………………….I
Abstract………….……………………………………………………….II
誌 謝………………………………………………………………….III
目 錄..…………………………………………………..….…………..IV
表 目 錄………………………………………………..……………VII
圖 目 錄………………………………………………..…….………IX
第一章 緒論………………………………………...…..……………….1
1.1 研究動機與目的………………………………..………………1
1.2 文獻回顧……………………………………..…………………3
1.2.1 向量式有限元素法………………….………………….3
1.2.2 防止落橋裝置………………………….……………….5
1.2.3 隔減震裝置…………………………….………...……..8
1.3 論文架構………………………………………..……………11
第二章 向量式有限元素法……………………………..……………..13
2.1 結構離散模式…………………………………………………14
2.2 質點運動方程式……………………………………..………..14
2.3 運動軌跡離散化………………………………………………16
2.4 變形與內力計算………………………………………………17
2.5 運動方程式的計算程序………………………………………27
第三章 採用隱式直接積分法之向量式有限元素分析…..………..…35
3.1 隱式Newmark-β直接積分計算程序…….….………………35
3.2 雷利阻尼分析(Rayleigh Damping Analysis)….………………40
3.2.1 勁度比例阻尼力計算(Stiffness-proportional damping)..44
3.3 數值算例………………………………………………..……..47
3.3.1 採用隱式直接積分法之向量式有限元素分析…..…….48
3.3.2 雷利阻尼分析…………………………………………...49
3.4 小結……………………………………………………..……..49
第四章 特殊元素分析與橋梁極限狀態模擬…………………..……..58
4.1 特殊元素………………………………………………………58
4.1.1 線性彈簧元素元素……………………………………..…60
4.1.2 雙線性彈簧元素………………………………………..…61
4.1.3 具可開孔彈簧元素……………………………………..…62
4.2 地表位移輸入法……………………………...……………….63
4.3 橋梁極限狀態模擬……………………………………………65
4.3.1 支承破壞模擬………………………………………..……66
4.3.2 構件斷裂模擬…………………………………..…………71
4.4 數值算例……………………………………...……………….73
4.4.1 雙線性彈簧元素具可開孔彈簧元素驗証……………….73
4.4.2 地表位移輸入法驗証………………………….………….75
4.4.3 滑動摩擦分析驗証………………………………….…….75
4.5 小結…………………………………………...……………….76
第五章 橋梁實例分析與參數研究……………………………………85
5.1 目標橋梁型式…………………………………………………85
5.2 數值分析模型…………………….………………………...…86
5.2.1 上部結構模擬……………….…………..……………...…86
5.2.2 下部結構模擬……………….…………..……………...…88
5.2.3 支承系統模擬……………….…………..……………...…89
5.2.4 防止落橋裝置模擬……………….…………..…...………91
5.3 參數研究……………………………………………………....93
5.3.1 動力歷時分析結果………………………………….…93
第六章 結論與未來展望…………………………………….…..…121
6.1 結論……………………………………………………...…121
6.2 未來展望……………………………………………………..124
參考文獻…………………………………………………….……….125
附圖………..………………………………………………….……….130
參考文獻 [1] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element," Journal of Mechanics, Vol.20, No.2, pp. 113-122.
[2] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements," Journal of Mechanics, Vol.20, No.2, pp. 123-132.
[3] Shih C., Wang, Y. K. and Ting, E. C. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part III. Convected Material Frames and Examples," Journal of Mechanics, Vol.20, No.2, pp. 133-143.
[4] Wang, C. Y., Wang, R. Z., Kang, L. C. and Ting, E. C. (2004), "Elastic-Plastic Large Deformation Analysis of 2D Frame Structure," Proceedings of the 21st International Congress of Theoretical and Applied Mechanics (IUTAM), SM1S-10270, Warsaw, Poland, August 15-21.
[5] Wu, T. Y., Wang, R. Z. and Wang, C. Y. (2006), "Large Deflection Analysis of Flexible Planar Frames," Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, pp. 593-606.
[6] Kawashima, K. and Shoji, G. (1999), "Effectiveness of Rubber Type Restrainer to Mitigate Pounding Effect Between Adjacent Deck during an Strong Earthquake," Journal of Structure Mechanics and Earthquake Engineering, JSCE, No.612/I-46, pp. 129-142.
[7] Kawashima, K. and Shoji, G. (2000), "Effect of Restrainers to Mitigate Pounding Between Adjacent Decks Subjected to A Strong Ground Motion," 12th World Conference on Earthquake Engineering, Paper No. 1435 (CD-ROM), Auckland, New Zealand.
[8] Watanabe, G. and Kawashima, K. (2004), "Numerical Simulation of Pounding of Bridge Decks," 13th World Conference on Earthquake Engineering, Paper No. 884 (CD-ROM), Vancouver, B.C., Canada.
[9] Matsumoto. T., Kawashima, K. and Watanabe, G. (2007), "Seismic Response of 3-Span Bridge Considering the Effect of Failure of Bearings," Journal of Structural Engineering, JSCE, Vol. 53A, pp. 503-512.
[10] Saiidi, M., Maragakis, E. and Feng, S. (1996), "Parameters in Bridge Restrainer Design for Seismic Retrofit," Journal of Structural Engineering, ASCE, Vol.122, No.19, pp.61-68.
[11] Saiidi, M., Randall, M., Maragakis, E. and Isakovic, T. (2001), "Seismic Restrainer Design Methods for Simply Supported Bridges," Journal of Bridge Engineering, Vol.6, No.5, 307-315.
[12] Trochalakis, P., Eberhard, M. O. and Stanton, J. F. (1997), "Design of Seismic Restrainers for In-Span Hinges," Journal of Structural Engineering, ASCE, Vol.123, No.4, 469-478.
[13] Liu, K. Y. and Chang, K. C. (2006), "Parametric Study on Performance of Bridge Retrofitted by Unseating Prevention Devices," Earthquake Engineering and Engineering Vibration, Vol. 5, No. 1, pp. 111-118.
[14] Sarrazin, M., Moroni, O. and Roesset, J. M. (2005), “Evaluation of Dynamic Response Characteristics of Seismically Isolated Bridges in Chile,” Earthquake Engineering and Structural Dynamics, Vol.34, No.4-5, pp.425-448.
[15] Hwang, J. S. and Tseng, Y. S. (2005), "Design Formulations for Supplemental Viscous Dampers to Highway Bridges," Earthquake Engineering and Structural Dynamics, Vol.34, No.13, pp.1627-1642.
[16] Computers and structures, Inc., (2002), "SAP2000, Integrated Finite Analysis and Design of Structures, Analysis Reference Manual, Version 9.0.3," University of California at Berkeley, California, USA.
[17] 內政部營建署 (2002),〝防止橋梁落橋裝置設計與現場施工技術之研究〞,台北,台灣。
[18] 行政院公共工程委員會 (2001),〝橋梁結構耐震、隔震及減震技術之應用研究〞,台北,台灣。
[19] 唐治平、陳全和 (1993),〝隔震橋梁位移控制〞,結構工程,第八卷,第三期,第19-32頁。
[20] 唐治平、李維森 (1997), 〝具流體阻尼器隔震橋梁之耐震研究〞,結構工程,第十二卷,第二期,第25-42頁。
[21] 唐治平、李維森 (1998),〝隔震橋梁用混合式消能系統研究〞,中國木水利工程學刊,第十卷,第三期,第505-514頁。
[22] 唐治平、李維森、柯孝勳 (2002),〝橋梁結構耐震、隔震及減震技術之應用研究〞,結構工程,第十七卷,第二期,第33-52頁。
[23] 張荻薇 (1988),「認識隔(減)震、制振結構」,結構工程,第三卷,第一期,第67-80頁。
[24] 張荻薇 (1989),「隔震技術在橋樑工程之應用」,結構工程,第四卷,第四期,第69-80頁。
[25] 張荻薇、張國鎮、宋裕祺、蔡孟豪 (1999),「集集地震橋梁損壞模式探討」,結構工程,第十四卷,第三期,第91-129頁。
[26] 郭拱源、盧智宏、張國鎮 (2002),「921 炎峰橋震害探討」,台大工程,第八十五期,第97-108頁。
[27] 張國鎮、郭拱源、劉光晏、盧智宏 (2004),「支承系統對橋梁耐震行為之影響-921集集地震橋梁震害之探討與省思」,結構工程,第十九卷,第二期,第55-73頁。
[28] 莊清鏘、陳詩宏、王仲宇 (2006),〝向量式有限元於結構被動控制之應用〞,固體與結構之工程計算-2006近代工程計算論壇,第O1-O25頁。
[29] 王仁佐 (2005),「向量式結構運動分析」,國立中央大學土木工程學研究所博士論文,王仲宇、盛若磐。
[30] 盧智宏 (2002),「橋梁防落裝置耐震行為之研究」,國立台灣大學土木工程學研究所碩士論文,張國鎮。
[31] 方嘉宏 (2005),「橋樑配置防震拉桿之非線性動力分析及設計」,國立台灣大學土木工程學研究所碩士論文,蔡益超。
[32] 徐瑞億 (2005),「橋梁防落拉桿之實驗與力學分析」,國立臺北科技大學土木與防災研究所碩士論文,李有豐。
[33] 李俊德 (2006),「防落拉桿應用於橋梁之振動台實驗與分析」,國立臺北科技大學土木與防災研究所碩士論文,李有豐。
[34] 廖偉信 (2002),「隔震系統於結構防震之研究」,博士論文,國立交通大學土木工程系所,王彥博。
[35] 陳柏宏 (2008),「運用向量式有限元素法於隔震橋梁之非線性動力分析」,國立中央大學土木工程學研究所碩士論文,李姿瑩。
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2010-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明