博碩士論文 973204019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.217.203.172
姓名 吳佩珊(Pei-shan Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Au觸媒於α,β-不飽和醛選擇性氫化反應之擔體效應研究
(The support effect of gold catalyst for selective hydrogenation of α,β- unsaturated aldehyde)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
★ 甲醇蒸汽重組產氫觸媒之設計★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究
★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究★ CuB超細合金觸媒之製備與催化性質探討
★ 負載式CoB非晶態合金觸媒製備與催化性質探討★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究
★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究★ 負載式CuB合金觸媒製備與催化性質探討
★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Au觸媒近年來被發現可應用於α,β-不飽和醛選擇性氫化反應,優先氫化共軛C=C/C=O鍵中的C=O鍵成不飽和醇。本實驗室過去將Au負載在Mg2AlO–hydrotalcite鹼性擔體上,製得高活性Au/Mg2AlO觸媒,進行α,β-不飽和醛選擇性氫化反應研究,發現Au3+/Au0比值越高觸媒活性與不飽和醇選擇率越好、不飽和醛分子越大反應活性越好、且非極性溶劑有利於反應,不同於一般Pt、Ni氫化反應金屬觸媒於小分子與極性溶劑有較好活性。因此主張反應物分子於金觸媒表面吸附作用力為類似物理作用力的偶極作用力與瞬間偶極作用力而非一般金屬之共價作用力。
本研究為了解此觀點是否適用於其他擔體金觸媒,選用有關α,β-不飽和醛選擇性氫化反應文獻所採用的擔體FeOOH、TiO2及γ-Al2O3,製備不同擔體金觸媒,於相同反應條件下進行α,β-不飽和醛選擇性氫化反應。發現Au3+/Au0比值與活性的關係並不像Au/Mg2AlO觸媒一般顯著,甚至Au/TiO2呈現相反趨勢;Au/FeOOH與Au/γ-Al2O3觸媒則看不到Au3+/Au0比值與活性的關係,反應活性與金顆粒大小有關。顯示Au/Mg2AlO觸媒主張Au3+/Au0比值越高,反應活性越好的觀點不能普遍適用於其它擔體金觸媒,活性的趨勢仍由金顆粒大小所主導。
以乙醇與環己烷探討溶劑效應,Au/Mg2AlO觸媒於非極性溶劑有利於α,β-不飽和醛選擇性氫化反應,其它擔體金觸媒與溶劑的關係大致與Au/Mg2AlO一致,但也有例外。
以檸檬醛、肉桂醛、葉醛與巴豆醛等反應物探討反應物分子大小與結
構對金觸媒催化活性與選擇率之影響。催化活性方面,不同於一般金屬觸媒,金觸媒對大分子不飽和醛催化活性較佳,活性依序為檸檬醛(C10) > 肉桂醛(C9) > 葉醛(C6) > 巴豆醛(C4)。選擇率方面,也不同於一般立體障礙效應,C=C鍵旁有較大立體障礙的肉桂醛,其不飽和醇選擇率反不及檸檬醛。顯示反應物分子於金觸媒表面吸附作用力確實與一般金屬不同。
擔體效應的探討,證實金觸媒的敏感性,擔體本身的性質會直接或間接影響到金觸媒於α,β-不飽和醛選擇性氫化反應的活性與選擇率。不同擔體金觸媒之間,金顆粒大小不代表絕對的活性指標,除了Au3+/Au0比值高,有利於反應活性,擔體的鹼性也扮演重要的有利角色。Mg2AlO-hydrotalcite鹼性擔體用於α,β-不飽和醛選擇性氫化反應具有優異的表現,顯現出鹼性擔體於α,β-不飽和醛選擇性氫化反應的優勢,可製備出具有高活性的金觸媒。
摘要(英) In recent year, Au catalyst was found that can be applied to liquid-phase selective hydrogenation of α,β-unsaturated aldehyde and was more advantage for hydrogenation C=O band of conjugation C=C/C=O band to become unsaturated alcohol (UOL). Our research in the past, Gold was dispersed on a solid base of Mg2AlO hydrotalcite using a modified deposition precipitation method to obtain a good catalyst for selective hydrogenation of α,β-unsturated aldehydes. The investigation confirms the activity of Au/Mg2AlO catalyst and selectivity of unsaturated alcohols are proportion of the Au3+/Au0 ratio. Many catalytic behaviors of Au/Mg2AlO catalyst of selective hydrogenation of α,β-unsturated aldehydes are different from conventional hydrogenation catalysts such as Pt and CoB catalyst which had good activity in polar solvent and smaller molecular weight α,β-unsaturated aldehydes. Inversely, Au/Mg2AlO catalyst had higher active in nonpolar solvent and bigger molecular weight α,β-unsaturated aldehydes. Besides, cinnamaldehyde have the most larger steric hindrance of the phenyl group around the conjugated C=C bond, but the selectivity of cinnamyl alcohol from cinnamaldehyde reduction is smaller than that of nerol/geraniol from citral. It is also difference from general catalyst. Hence, we advocate the surface adsorption between gold catalyst and reactant was similar of the dipole-dipole interaction and dispersion force which was such as physical interaction not as the covalent interaction of gerenal metal catalyst.
This research, in order to understand the hydrogenation characteristics of Au/Mg2AlO catalyst in α,β-unsaturated aldehydes whether generally be suitable for the other support gold catalyst, selected support FeOOH、TiO2 and γ-Al2O3 which were used and adopted in relevant literature to prepare gold catalyst for selective hydrogenation of α,β-unsaturated aldehyde in the same conditions. The result discover the relationship of Au3+/Au0 ratio and activity is not clean as Au/Mg2AlO catalyst, even is opposite on Au/TiO2; The activity of Au/FeOOH and Au/γ-Al2O3 are related with gold particle size. So, the claim that activity is proportion of the Au3+/Au0 ratio is not generally suitable for the other support gold catalyst.
Choosing ethanol and cyclohexane as reaction solvent to investigate solvent effect. The other support gold catalysts are similar with Au/Mg2AlO catalyst is good for selective hydrogenation of α,β-unsaturated aldehyde in nonpolar solvent, but also have an exception.
In comparision to the conventional hydrogenation catalysts, gold catalyst is more activity for bigger molecular weight α,β-unsaturated aldehydes. The order is citral (C10) > cinnamaldehyde (C9) > leaf aldehyde (C6) > crotonaldehyde (C4).
Besides, the selectivity of cinnamyl alcohol from cinnamaldehyde reduction is smaller than that of nerol/geraniol from citral, it also prove the surface adsorption between gold catalyst and reactant is difference with general metal catalyst.
The discussion of support effect confirm the sensitivity of gold catalyst and the properties of support oneself will dierct or indirect to affect gold catalyst’s reactive avtivity. Between the different support gold catalyst, the gold particle size does not absolutely represent to the active target. The ratio of Au3+/Au0 is advantageous to the activity and the basic of support also play the important role.
A solid base of Mg2AlO hydrotalcite can prepare highly active gold catalysts and show the superiority of base support for selective hydrogenation of α,β-unsaturated aldehyde.
關鍵字(中) ★ 溶劑
★ 金價態
★ 不飽和醛
★ 選擇性氫化
★ 金觸媒
關鍵字(英) ★ Unsaturated aldehyde
★ Au3+/Au0
★ Solvent
★ Selective hydrogenation
★ Gold catalyst
論文目次 摘要 i
Abstrast iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
第二章 文獻回顧 4
2-1 金觸媒的發展史 4
2-2 金觸媒的製備方式 7
2-2-1 含浸法(Impregnation) 7
2-2-2 共沉澱法(Coprecipitation) 8
2-2-3 沉積沉澱法(Deposition-precipitation) 8
2-2-4 其他方法 11
2-3 金觸媒於不同擔體表面之活性狀態 13
2-3-1 Au/Mg2AlO觸媒 13
2-3-2 Au/CeO2觸媒 17
2-3-3 Au/TiO2觸媒 19
2-3-4 Au/γ-Al2O3觸媒 21
2-3-5 Au/FeOOH觸媒 23
2-4 α,β-不飽和醛選擇性氫化反應 27
2-4-1 第VIII族過渡金屬 28
2-4-2 鉑觸媒 29
2-4-2-(a) 擔體效應 29
2-4-2-(b) 金屬顆粒大小之影響 30
2-4-2-(c) 促進劑影響 32
2-4-2-(d) 溶劑效應 34
2-4-3 金觸媒 35
2-4-3-(a) 肉桂醛選擇性氫化反應 36
2-4-3-(b) 檸檬醛選擇性氫化反應 40
2-4-3-(c) 葉醛選擇性氫化反應 43
2-4-3-(d) 巴豆醛選擇性氫化反應 44
第三章 實驗方法與設備 49
3-1 Mg2AlO-hydrotalcite擔體之製備 49
3-2 觸媒製備程序 49
3-2-1 2 wt% Au/Mg2AlO-hydrotalcite觸媒之製備 49
3-2-2 2 wt% Au/support觸媒之製備 51
3-3 擔體與觸媒性質鑑定 52
3-3-1 元素組成分析(ICP) 52
3-3-2 X-射線繞射分析(XRD) 53
3-3-3 比表面積測定(BET) 53
3-3-4 X-射線光電子光譜(XPS) 54
3-3-5 穿透式電子顯微鏡(TEM) 55
3-4 反應活性測試 55
3-5 實驗藥品及氣體 59
第四章 結果與討論 62
4-1 2%Au觸媒於α,β-不飽和醛選擇性氫化與鑑定分析 62
4-1-1 Au/Mg2AlO觸媒於α,β-不飽和醛之選擇性氫化 65
4-1-1-(a) 觸媒煅燒溫度之影響 65
4-1-1-(b) 溶劑效應 71
4-1-1-(c) 反應物分子大小 75
4-1-2 Au/TiO2觸媒於α,β-不飽和醛之選擇性氫化 78
4-1-2-(a) 觸媒煅燒溫度之影響 78
4-1-2-(b) 溶劑效應 84
4-1-2-(c) 反應物分子大小 84
4-1-3 Au/γ-Al2O3觸媒於α,β-不飽和醛之選擇性氫化 87
4-1-3-(a) 觸媒煅燒溫度之影響 87
4-1-3-(b) 溶劑效應 91
4-1-3-(c) 反應物分子大小 94
4-1-4 Au/FeOOH觸媒於α,β-不飽和醛之選擇性氫化 94
4-1-4-(a) 觸媒煅燒溫度之影響 94
4-1-4-(b) 溶劑效應 102
4-1-4-(c) 反應物分子大小 102
4-2 擔體效應 106
第五章 結論 114
總 結 115
參考文獻 116
參考文獻 [1] M. Haruta, N. Yamada, T. Kobayashi, S. lijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal. 115 (1989) 301-309.
[2] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4, J. Catal. 144 (1993) 175-192.
[3] M. Haruta, When gold is not noble: catalysis by nanoparticles, The Chemical Record 3 (2003) 75-87.
[4] A. Schulz, M. Hargittai, Structural variations and bonding in gold halides: a quantum chemical study of monomeric and dimeric gold monohalide and gold trihalide molecules, AuX, Au2X2, AuX3, and Au2X6 (X=F, Cl, Br, I), Chem. Eur. J. 7 (17) (2001) 3657-3670.
[5] M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides, CATTECH 6 (3) (2002) 102-115.
[6] C.T. Chang, B.J. Liaw, C.T. Huang, Y.Z. Chen, Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation, Appl. Catal. A: Gen. 332 (2007) 216-224.
[7] V. Ponec, On the role of promoters in hydrogenateon on metals: α,β-unsaturated aldehydes and ketones, Appl. Catal. A: Gen. 149 (1997) 27-48.
[8] N. Mahata, F. Goncalves, M. Fernando, R. Pereira, J.L. Figueiredo, Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst, Appl. Catal. A: Gen. 339 (2008) 159-168.
[9] M.A. Vannice, B. Sen, Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum, J. Catal. 115 (1989) 65-78.
[10] H. Yoshitake, Y. Iwasawa, Active sites and reaction mechanisms for deuteration of acrolein on TiO2-, Y2O3-, ZrO2-, CeO2 and Na/SiO2- supported platinum catalysts, J. Chem. Soc. Faraday Trans. 88 (3) (1992) 503-510.
[11] A. Sepúlveda-Escribano, F. Coloma, F. Rodríguez-Reinoso, Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts, J. Catal. 178 (1998) 649-657.
[12] P.G.N. Mertens, J. Wahlen, X. Ye, H. Poelman, D.E. De Vos, Chemoselective C=O hydrogenation of α,β-unsaturated carbonyl compounds over quasihomogeneous and heterogeneous nano-Au0 catalysts promoted by lewis acidity, Catal. Lett. 118 (2007) 15-21.
[13] P.G.N. Mertens, F. Cuypers, P. Vandezande, X. Ye, F. Verpoort, I.F.J. Vankelecom, D.E. De Vos, Ag0 and Co0 nanocolloids as recyclable quasihomogeneous metal catalysts for the hydrogenation of α,β-unsaturated aldehydes to allylic alcohol fragrances, Appl. Catal. A: Gen. 325 (2007) 130-139.
[14] P.G.N. Mertens, H. Poelman, X. Ye, I.F.J. Vankelecom, P.A. Jacobs and D.E. De Vos, Au0 nanocolloids as recyclable quasihomogeneous metal catalysts in the chemoselective hydrogenation of α,β-unsaturated aldehydes and ketones to allylic alcohols, Catal. Today 122 (2007) 352-360.
[15] 游焜竣, Au/MgxAlO-hydrotalcite 觸媒於α,β-不飽和醛選擇性氫化反應之研究, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2008).
[16] A.G. Sault, R.J. Madix, C.T. Campbell, Adsorption of oxygen and hydrogen on Au(110)-(1 × 2), Surf. Sci. 169 (1986) 347-356.
[17] Ph. Buffet, J.P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A, 13 (1976) 2287-2298.
[18] G.C. Bond, P.A. Sermon, Gold catalysts for olefin hydrogenateon, Gold Bull. 6 (1976) 102-105.
[19] W.C. Li, M. Comotti, F. Schüth, Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation, J. Catal. 237 (2006) 190-196.
[20] Hsin-Yen Tsai, Yan-De Lin, Wan-Ting Fu, Shawn D. Lin, The Activation of Supported Au Catalysts prepared by Impregnation, Gold Bull. 40 (2007) 184-191.
[21] S. Ivanova, V. Pitchon, C. Petit, H. Herschbach, A.V. Dorsselaer, E. Leize, Preparation of alumina supported gold catalysts: Gold complexes genesis, identification and speciation by mass spectrometry, Appl. Catal. A: Gen. 298 (2006) 203-210.
[22] F. Moreau, G.C. Bond, A.O. Taylor, Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents, J. Catal. 231 (2005) 105-114.
[23] V. Ponec, G.C. Bond, Catalysis by metals and alloys, Elsevier, Amsterdam, 1996.
[24] M. Haruta, Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications, Gold Bull. 37 (2004) 27-36.
[25] F. Cavani, F. Trifiro, A. Vacari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today 11 (1911) 173-301.
[26] D. Tichit , M.H. Lhouty, A. Guida, B.H. Chiche, F. Figueras, A. Auroux, D. Bartalini, E. Farronn, Textural properties and catalytic activity of hydrotalcite, J. Catal. 151 (1995) 50-59.
[27] W.T. Reichle, Catalytic reactions by thermally activated anionic clay minerals, J. Catal. 94 (1985) 547-577.
[28] A.L. McKenzie , C.T. Fishel, T.J. Davis, Investigation of the surface structure and basic properties of calcined hydrotalcite, J. Catal. 138 (1992) 547-561.
[29] A. Corma, V. Fornes, F. Rey, Hydrotalcite as base catalyst: influence of the chemical composition and synthesis condition on the dehydrogenation of isopropanol, J. Catal. 148 (1994) 205-212.
[30] A. Corma, V. Fornes, R.M. Martin-Aranda, F. Rey, Determination of base properties of hydrotalcite: condensation of benzaldehyde with ethyl acetoacetate, J. Catal. 134 (1992) 58-65.
[31] 廖志偉, 一步合成甲基異丁基酮之多功能觸媒研究-Pd(Ni)/ hydrotalcite, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1996).
[32] Weishen Yang, Yongman Kim, Paul K.T. Liu, Muhammad Sahimi,
Theodore T. Tsotsis, A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide, Chem. Eng. Sci. 57 (2002) 2945-2953.
[33] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Krönert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paal, R. Schlögl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism, J. Catal. 237 (2006) 17-28.
[34] Y. Huang, A. Wang, L. Li, X. Wang, D. Su, T. Zhang, Ir-in-ceria : A highly selective catalyst for preferential CO oxidation, J. Catal. 255 (2008) 144-152.
[35] Jun Zhang, Ying Jin, Changyan Li, Yuenian Shen, Li Han, Zhongxue Hu, Xiaowei Di, Zhiliang Liu, Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation, Appl. Catal. B: Environ 91 (2009) 11-20.
[36] Jia Meilin, Bai Haifeng, Zhaorigetu, Shen Yuenain, Li Yanfeng, Preparation of Au/CeO2 catalyst and its catalytic performance for HCHO oxidation, J. Rare Earths 26 (2008) 528-531.
[37] Q. Fu, S. Kudriavtseva, H. Saltsburg, M. Flytzani-Stephanopoulos, Gold-ceria catalysts for low-temperature water-gas shift reaction, Chem. Eng. J. 93 (2003) 41-53.
[38] R. Pillai, S. Deevi, Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide, Appl. Catal. A: Gen. 299 (2006) 266-273.
[39] Maria Pia Casaletto, Alessandro Longo, Anna Maria Venezia, Antonino Martorana, Antonio Prestianni, Metal-support and preparation influence on the structural and electronic properties of gold catalysts, App. Catal. A: Gen. 302 (2006) 309-316.
[40] Palanivelu Sangeetha, Yu-Wen Chen, Preferential oxidation of CO in H2 stream on Au/CeO2-TiO2 catalysts, Int. J. hydrogen energy 34 (2009) 7342-7347.
[41] S. Scirè, S. Minicò, C. Crisafulli, C. Satriano, A. Pistone, Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts, Appl. Catal. B: Environ. 40 (2003) 43-49.
[42] P. Lakshmanan, L. Delannoy, V. Richard, Christophe Me´ thivier,
C. Potvin, C. Louis, Total oxidation of propene over Au/xCeO2-Al2O3 catalysts: Influence of the CeO2 loading and the activation treatment, Appl. Catal. B: Environ. 96 (2010) 117-125.
[43] 維基百科, http://zh.wikipedia.org/zh-tw/TiO2 (2010).
[44] B. Campo, M. Volpe, S. Ivanova, R. Touroude, Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts, J. Catal. 242 (2006) 162-171.
[45] R. Zanella, C. Louis, S. Giorgio, R. Touroude, Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism, J. Catal. 223 (2004) 328-339.
[46] Javier Guzman, Stefan Kuba, Juan C. Fierro-Gonzalez, Bruce C. Gates, Formation of gold clusters on TiO2 from adsorbed Au(CH3)2(C5H7O2): characterization by X-ray absorption spectroscopy, Catal Lett. 95 (2004) 77-86.
[47] J.D. Grunwaldt, M. Maciejewski, O.S. Becker, P. Fabrizioli, A. Baiker, Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation, J. Catal. 186 (1999) 458-469.
[48] M. Haruta, M. Daté, Advances in the catalysis of Au nanoparticles, Appl. Catal. A: Gen. 222 (2001) 427-437.
[49] E.D. Park, J.S. Lee, Effect of pretreatment conditions on CO oxidation over supported Au catalysts, J. Catal. 186 (1999) 1-11.
[50] A. Wolf, F. Schuth, “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Appl. Catal. A: Gen. 226 (2002) 1-13.
[51] D. Boyd, S. Golunski, G.R. Hearne, T. Magadzu, K. Mallick, M.C. Raphulu, A. Venugopal, M.S. Scurrell, Reductive routes to stabilized nanogold and relation to catalysis by supported gold, Appl. Catal. A: Gen. 292 (2005) 76-81.
[52] Jie Huang, Wei-Lin Dai, Hexing Li, Kangnian Fan, Au/TiO2 as high efficient catalyst for the selective oxidative cyclization of 1,4-butanediol to γ –butyrolactone, J. Catal. 252 (2007) 69-76.
[53] Nikolaos Dimitratos, Alberto Villa, Claudia L. Bianchi, Laura Prati, Michiel Makkee, Gold on titania: Effect of preparation method in the
liquid phase oxidation, Appl. Catal. A: Gen. 311 (2006) 185-192.
[54] 陳星佑, 巴豆醛於Au/Mg2AlO-hydrotalcite 觸媒之液相選擇性氫化反應研究, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2009).
[55] N. Weiher, E. Bus, L. Delannoy, C. Louis, D.E. Ramaker, J.T. Miller, J.A.V. Bokhoven, Structure and oxidation state of gold on different supports under various CO oxidation conditions, J. Catal. 240 (2006) 100-107.
[56] J. Garcıa-Serrano, A.G. Galindo, U. Pal, Au–Al2O3 nanocomposites: XPS and FTIR spectroscopic studies, Sol. Energy Mater. Sol. Cells 82 (2004) 291-298.
[57] M.A.P. Dekkers, M.J. Lippits, B.E. Nienwenhuys, Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions, Catal. Today 54 (1999) 381-390.
[58] H.H. Kung, M.C. Kung, C.K. Costello, Supported Au catalysts for low temperature CO oxidation, J. Catal. 216 (2003) 425-432.
[59] E. Gy. Szabó, A. Tompos, M. Hegedűs, Á. Szegedi, J.L. Margitfalvi, The influence of cooling atmosphere after reduction on the catalytic properties of Au/Al2O3 and Au/MgO catalysts in CO oxidation, Appl. Catal. A: Gen. 320 (2007) 114-121.
[60] Ingrid Berrodier, FrancoisS Farges, Marc Benedetti, Markus Winterer, Gordon E. Brown, Jr. Michel Deveugh`ele, Adsorption mechanisms of trivalent gold on iron- and aluminum-(oxy)hydroxides. Part 1: X-ray absorption and Raman scattering spectroscopic studies of Au(III) adsorbed on ferrihydrite, goethite, and boehmite, Geochimica et Cosmochimica Acta, 68 (2004) 3019-3042.
[61] 土壤無機固定相, 台灣大學.
[62] C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti, S. Galvagno, A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts, Catal. Today 122 (2007) 341-351.
[63] C. Mohr, P. Claus, Hydrogenation properties of supported nanosized gold particles, Sci. Prog. 84 (2001) 311-334.
[64] R.A.V. Santan, M. Neurock, Concepts in theoretical heterogeneous catalytic reactivity, Catal. Rev.-Sci. Eng. 37 (4) (1995) 557-698.
[65] G. Cordier, Y. Colleuille, P. Fouilloux, in Catalyse par les Metaux (B. Imelik et al., eds.), Editions du CNRS, Paris, (1984) 349.
[66] G. Cordier, French Patent F 2,329,628 (1975), to Rhone-Poulene S.A. , Chem. Abstr. 87 (1997) , 38862.
[67] U.K. Singh, M.A. Vannice, Liquid-phase citral hydrogenation over SiO2-supported group VIII metals J. Catal. 199 (2001) 73-84.
[68] A. Giroir-Fendler, D. Richard, P. Gallezot, in Heterogeneous Catalysis and Fine chemicals, Studies in Surface Science and Catalysis Vol.41, Elsevier, Amsterdam, (1988) 171.
[69] D.G. Blackmond, A. Waghray, R. Oukaci, B. Blanc, P. Gallezot, Selective hydrogenation of unsaturated aldehydes over zeolite-supported metals, Studies in Surface Science and Catalysis Volume 59 (1991) 145-152.
[70] E. Ahumada, H. Lizama, F. Orellana, C. Suárez, A. Huidobro, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, Catalytic oxidation of Fe(II) by activated carbon in the presence of oxygen.: Effect of the surface oxidation degree on the catalytic activity, Carbon 40 (2002) 2827-2834.
[71] M. Consonni, D. Jokic, D. Yu Murzin, R. Touroude, High performances of Pt/ZnO catalysts in selective hydrogenation of crotonaldehyde, J. Catal. 188 (1999) 165-175.
[72] A. Grioir-Fendler, D. Richard, P. Gallezot, Chemioselectivity in the catalytic hydrogenateon of cinnamaldehyde: effect of metal particle morphology, Catal. Lett. 5 (1990) 175-181.
[73] A.J. Plomp, H. Vuori, A. Outi, I. Krause, Krijn P. de Jong, Johannes H. Bitter, Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde, Appl. Catal. A: Gen. 351 (2008) 9-15.
[74] M. Englisch, A. Jentys, J.A. Lercher, Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and TiO2, J. Catal. 166 (1997) 25-35.
[75] M. Englisch, V.S. Ranade, J.A. Lercher, Liquid phase hydrogenation of crotonaldehyde over Pt/SiO2, Appl. Catal. A: Gen. 163 (1997) 111-122.
[76] M. Abid, V. Paul-Boncour, R. Touroude, Pt/CeO2 catalysts in crotonaldehyde hydrogenation: selectivity, metal particle size and SMSI states, Appl. Catal. A: Gen. 297 (2006) 48-59.
[77] F. Delbecq, P. Sautet, Competitive C=C and C=O adsorption of α,β-unsaturated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions: a theoretical approach, J. Catal. 152 (1995) 217-236.
[78] D. Goupil, P. Fouilloux, R. Maurel, Activity and selectivity of Pt-Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol, React. Kinet. Catal. Lett. 35 (1987) 185-193.
[79] P. Beccat, J.C. Bertolini, Y. Gauthier, J. Massardier, P. Ruiz, Crotonaldehyde and methylcrotonaldehyde hydrogenation over Pt(111) and Pt80Fe20(111) single crystals, J. Catal. 126 (1990) 451-456.
[80] N. Mahata, F. Goncalves, M. Fernando, R. Pereira, J.L. Figueiredo, Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst, Appl. Catal. A: Gen. 339 (2008) 159-168.
[81] E.V. Ramos-Fernández, A.F.P. Ferreira, A. Sepúlveda-Escribano, F. Kapteijn, F. Rodríguez-Reinoso, Enhancing the catalytic performance of Pt/ZnO in the selective hydrogenation of cinnamaldehyde by Cr addition to the support, J. Catal. 258 (2008) 52-60.
[82] Nicola´s M. Bertero, Andre´s F. Trasarti, Bernard Moraweck, Armando Borgna, Alberto J. Marchi, Selective liquid-phase hydrogenation of citral over supported bimetallic Pt–Co catalysts, Appl. Catal. A: Gen. 358 (2009) 32-41.
[83] V. Satagopan, S.B. Chandalia, Selectivity aspects in the multi-phase hydrogenation of α,β-unsaturated aldehydes over supported noble metal catalysts: Part II, J. Chem. Tech. Biotechnol. 60 (1994) 17-21.
[84] W. Koo-Amornpattana, J.M. Winterbottom, Pt and Pt-alloy catalysts and their properties for the liquid-phase hydrogenation of cinnamaldehyde, Catal. Today 66 (2001) 277-287.
[85] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D.Y. Murzin, I. Paseka, T. Heikkilä, E. Laine, P. Laukkanen, J. Väyrynen, Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde, Appl. Catal. A: Gen. 251 (2003) 385-396.
[86] M. Shirai, T. Tanaka, M. Arai, Selective hydrogenation of α,β-unsaturated aldehyde to unsaturated alcohol with supported platinum catalysts at high pressures of hydrogen, J. Mol. Catal. A: Chem. 168 (2001) 99-103.
[87] M.A. Aramendia, V. Borau, C. Jimenez, J.M. Marinas, A. Porras, F.J. Urbano, Selective liquid-phase hydrogenation of citral over supported palladium, J. Catal. 172 (1997) 46-54.
[88] I. Kun, G. Szöllösi, M. Bartók, Crotonaldehyde hydrogenation over clay-supported platinum catalysts, J. Mol. Catal. A: Chem. 169 (2001) 235-246.
[89] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, D.Y. Murzin, Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite, J. Mol. Catal. A: Chem. 217 (2004) 145-154.
[90] S. Mukherjee, M.A. Vannice, Solvent effects in liquid-phase reactions I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects, J. Catal. 243 (2006) 108-130.
[91] M. Chatterjee, Y. Ikushima, T. Yokoyama, T. Suzuki, Effect of heteroatom substituted mesoporous support on the selective hydrogenation of cinnamaldehyde in supercritical carbon dioxide, Mic. Mes. Mat. 117 (2009) 201-207.
[92] J. Jia, K. Haraki, J.N. Kondo, K. Domen, K. Tamaru, Selective hydrogenation of acetylene over Au/Al2O3 catalyst, J. Phys. Chem. B 104 (2000) 11153-11156.
[93] M. Okumura, T. Akita, M. Haruta, Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts, Catal. Today 74 (2002) 265-269.
[94] J.E. Bailie, G.J. Hutchings, Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation, Chem. Commun. (1999) 2151-2152.
[95] Jennifer Lenz , Betiana C. Campo, Mariana Alvarez , Maria A. Volpe, Liquid phase hydrogenation of α,β-unsaturated aldehydes over gold supported on iron oxides, J. Catal. 267 (2009) 50-56.
[96] C. Milone, M.C. Trapani, S. Galvagno, Synthesis of cinnamyl ethyl ether in the hydrogenation of cinnamaldehyde on Au/TiO2 catalysts, Appl. Catal. A: Gen. 337 (2008) 163-167.
[97] E. Bus, R. Prins, J. A. van Bokhoven, Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts, Catal. Commun. 8 (2007) 1397-1402.
[98] C. Milone, M.C. Trapani, S. Galvagno, Synthesis of cinnamyl ethyl ether in the hydrogenation of cinnamaldehyde on Au/TiO2 catalysts, Appl. Catal. A: Gen. 337 (2008) 163-167.
[99] Hui Shi, Na Xu, Dan Zhao, Bo-Qing Xu, Immobilized PVA-stabilized gold nanoparticles on silica show an unusual selectivity in the hydrogenation of cinnamaldehyde, Catal. Commun. 9 (2008) 1949-1954
[100] C. Milone, M.L. Tropeano, G. Gulino, G. Neri, R. Ingoglia and S. Galvagno, Selective liquid phase hydrogenation of citral on Au/Fe2O3
Catalysts, Chem. Commun. (2002) 868-869.
[101] Ruixia Liu, Yancun Yu, Kazuki Yoshida, Guiming Li, Haoxi Jiang, Minhua Zhang, Fengyu Zhao, Shinichiro Fujita, Masahiko Arai, Physically and chemically mixed TiO2-supported Pd and Au catalysts: unexpected synergistic effects on selective hydrogenation of citral in supercritical CO2, J. Catal. 269 (2010) 191-200.
[102] Lidia N. Protasova, Evgeny V. Rebrov, Tatiana S. Glazneva, Angel erenguer-Murcia, Zinfer R. Ismagilov, Jaap C. Schouten, Control of the thickness of mesoporous titania films for application in multiphase catalytic microreactors, J. Catal. xxx (2010) xxx–xxx.
[103] Pascal G.N. Mertens , Pieter Vandezande , Xingpu Ye , Hilde Poelman,
Ivo F.J. Vankelecom , Dirk E. De Vos, Recyclable Au0, Ag0 and Au0-Ag0 nanocolloids for the chemoselective hydrogenation of α,β-unsaturated aldehydes and ketones to allylic alcohols, Appl. Catal. A: Gen. 355 (2009) 176-183.
[104] P.G.N. Mertens, H. Poelman, X. Ye, I.F.J. Vankelecom, P.A. Jacobs, D.E. De Vos, Au0 nanocolloids as recyclable quasihomogeneous metal catalystsin the chemoselective hydrogenation of α,β-unsaturated aldehydes and ketones to allylic alcohols, Catal. Today 122 (2007) 352-360.
[105] D.V. Sokol’skii, N.V. Anisimova, A.K. Zharmagambetova, S.G. Mukhamedzhanova, L.N. Edygenova, Pt-Fe2O3 catalytic system for hydrogenation reactions, React. Kinet. Catal. Lett. 33 (1987) 399-403.
[106] M. Okumura, T. Akita, M. Haruta, Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts, Catal. Today 74 (2002) 265-269.
[107] B. Campo, C. Petit, M. A. Volpe, Hydrogenation of crotonaldehyde on different Au/CeO2 catalysts, J. Catal. 0 (2007) 1-8.
[108] J.E. Bailie, H.A. Abdullah, J.A. Anderson, C.H. Rochester, N.V. Richardson, N. Hodge, J.G. Zhang, A. Burrows, C.J. Kiel, G.J. Hutchings, Hydrogenation of but-2-enal over supported Au/ZnO catalysts, Phys. Chem. Chem. Phys. 3 (2001) 4113-4121.
[109] S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister, P. Claus, Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions, Catal. Today 72 (2002) 63-78.
[110] B. Campo, G. Santori, C. Petit, M. Volpe, Liquid phase hydrogenation of crotonaldehyde over Au/CeO2 catalysts, Appl. Catal. A: Gen. 359 (2009) 79-83.
[111] B.C. Campo, S. Ivanova, C. Gigola, C. Petit, M.A. Volpe, Crotonaldehyde hydrogenation on supported gold catalysts, Catal. Today 133-135 (2008) 661-666.
指導教授 陳吟足(Yin-Zu Chen) 審核日期 2010-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明