參考文獻 |
1.Virtanen, J.A., Cheng, K. H., and Somerharju, P., “Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model”. Proceedings of the National Academy of Sciences of the United States of America, 1998. vol. 95(no. 9): p. 4964-4969.
2.Bangham D., M.M.S.a.J.C.W., “Diffusion of Univalent Ions across the Lamellae of Swollen Phosopholipids.”. J. Mol. Biol., 1965. 13: p. 238-252.
3.Lasic, D.D., Liposomes:From Physics to Applications. 1993.
4.J. Wilschut, N.D.a.D.P., Studies on the Mechanism of Membrane-Fusion - Kinetics of Calcium-Ion Induced Fusion of Phosphatidylserine Vesicles Followed by a New Assay forMixing of Aqueous Vesicle Contents. Biochemistry, 1980. 19: p. 6011-6021.
5.Lasic, D.D., Mechanisms of Liposome Formation. J. Lipid Res., 1995. 5: p. 431-441.
6.G. V. Betageri, S.A.J.a.D.L.P., Liposome Drug Delivery Systems. 1993.
7.G. V. Betageri, S.A.J., B. S. Daniel and L. Parsons, Liposome Drug Delivery Systems. 1993.
8.E. E. Szebeni, D.H.H.a.K.H.W., Encapsulation of Hemolglobin on Phospholipid liposomes︰Characterization and Stability. Biochemistry, 1985. 24: p. 2827-2832.
9.L. Rossi, S.A., P. Calissano and E. Marra, Interaction of Different froms of Hemoglobin with Artificial Lipid Membranes. Biochim. Biophys. Acta., 1975. 375: p. 477-482.
10.Miller, W.P.P.a.I.F., Oxidative Interaction between Hemoglobin and Egg Lecithin Liposomes. Biomat. Art. Cells, Art.Org., 1981. 17: p. 563-581.
11.Miller, I.F., “Synthetic Red Blood Cells from Lipid Encapsulated Hemoglobin”. Chem. Eng. Commun., 1981. 9,: p. 363-370.
12.R. L. Hamilton, J.G.L., S. S. Guo, M. C. Williams and R. L.Havel, “Unilamellar Liposomes made with the French Oressure Cell︰A Simple Preparation and Semiquantitative Technique”. J.Lipid Res., 1980. 21: p. 981-992.
13.B. P. Gaber, P.Y., J. P. Shriedan and E. L. Chang, “Encapsulatiom of Hemoglobin in Phospholipid Vesicles”. FEBS Lett., 1983. 153: p. 285-288.
14.Bangham, D.W.D.a.A.D., “ Large Volume Liposomes by An Ether Vaporization Method ”. Biochem. Biophys. Acta., 1976. 443: p. 629-634.
15.S. Kim and G, M., Martin, “Preparation of Cell-Size Unilamellar Liposomes with High Captured Volume and Defined Size Distribution”. Biochem. Biophys. Acta., 1981. 646: p. 1-9.
16.B. Jopski, V.P., H. W. Jaroni, R. Schubert and K. H. Schmidt, “Perparation of Hemoglobin-containing Liposomes Using Octylglucoside and Octyltetraoxyeyhylene”. Biochem. Biophys. Acta., 1989. 978: p. 79-84.
17.Lehrer, R.e.a., “Defensins Natural Peptide Antibiotics of Human Neutrophils”. J.Clin.Invest, 1985. 76: p. 1427-1435.
18.Michl, H.a.A.C., Isolation and structure of a haemolytic polypeptide from the defensive secretion of European Bombina species. Chemical Monthly, 1970. 101: p. 182-189.
19.Habermann, E., Bee and Wasp Venoms Science. 1972. 177: p. 314-322.
20.J Patterson-Delafield, R.J.M., and R I Lehrer, Microbicidal cationic proteins in rabbit alveolar macrophages: a potential host defense mechanism. Infect Immun., 1980. 30(1): p. 180-192.
21.Albiol Matanic VC, C.V., Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. International Journal of Antimicrobial Agents, 2004. 23(4): p. 382-389.
22.Morikawa N, H.K., Nakajima T, Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem Biophys Res Commun. , 1992. 189: p. 184-90.
23.Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. PNAS, 1987. 84: p. 5449-5453.
24.Selsted, M., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. Journal of biological chemistry, 1992. 267(7): p. 4292-4295.
25.Radermacher, S., Bactenecin, a leukocytic antimicrobial peptide, is cytotoxic to neuronal and glial cells. J Neurosci Res. , 1993. 15: p. 657-662.
26.Chan, D.I., Prenner, E. J., and Vogel, H. J., Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta (BBA)- Biomembranes, 2006. 1758(9): p. 1184-1202.
27.Biggin, P.C.a.M.S.P.S., Interactions of alpha-helices with lipid bilayers: a review of simulation studies. Biophysical Chemistry, 1999. 76(3): p. 161-183.
28.Yang, L.e.a., Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical Journal, 2001. 81(3): p. 1475-1485.
29.Miteva, M.e.a., Molecular electroporation" a unifying concept for the description og membrane pore formatiom by antibacterial peptides, exemplified with NK-lysin. FEBS Lett., 1999. 462(1-2): p. 155-158.
30.Pokorny, A.a.P.F.E.A., Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicle and the mechanism of graded release by amphipathic, alpha-helical peptides. Biochemistry, 2004. 43(27): p. 8846-8857.
31.Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Micro., 2005. 3(3): p. 238-250.
32.Rozek, A., C.L Friedrich, and R.E.W Hancock, Structure of the bovine antimicrobial peptide Indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry, 2000. 39(51): p. 15765-15774.
33.Robinson, W.E.e.a., AntipHIV-1 activity of Indolicidin, an antimicrobial peptide from neutrophils. Journal of Leukocyte Biology, 1998. 63(1): p. 94-100.
34.Ahmad, I., Perkins, W. R., Lupan, D. M. et al., Liposomal entrapment of the neutrophil-derived peptide Indolicidin endows it with in vivo antifungal activity. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1995. 1237(2): p. 109-114.
35.Subbalakshmi, C., Krishnakumari, V., Nagaraj, R. et al., Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide Indolicidin. FEBS Letters, 1996. 395(1): p. 48-52.
36.Schluesener, H.J.e.a., Leukocytic Antimicrobial Peptides Kill Autoimmune T-Cells. Journal of Neuroimmunology, 1993. 47(2): p. 199-202.
37.Yang Sung-Tae, S.S.Y., , K.-S. H. et al., Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. International journal of antimicrobial agents, 2006. 27(4): p. 325-330.
38.Falla, T.J., Karunaratne, D. N., and Hancock, R. E. W., Mode of Action of the Antimicrobial Peptide Indolicidin. J. Biol. Chem., 1996. 271(32): p. 19298-19303.
39.Friedrich, C.L., Moyles, D., Beveridge, T. J. et al., Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive Bacteria. Antimicrob.Agents Chemother., 2000. 44(8): p. 2086-2092.
40.Giacometti, A., Cirioni, O., Greganti, G. et al., In Vitro Activities of Membrane-Active Peptides against Gram-Positive and Gram-Negative Aerobic Bacteria. Antimicrob. Agents Chemother., 1998. 42(12): p. 3320-3324.
41.Lee, D.G., Kim, H. K., Kim, S. A. et al., Fungicidal effect of Indolicidin and its interaction with phospholipid membranes. Biochemical and Biophysical Research Communications, 2003. 305(2): p. 305-310.
42.Schibli, D.J., Epand, R. F., Vogel, H. J. et al., Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochemistry and Cell Biology, 2002. 80: p. 667-677.
43.Manhong Wu, E.M., Roland Benz, Robert E. W. Hancock, Mechanism of Interaction of Different Classes of Cationic Antimicrobial Peptides with Planar Bilayers and with the Cytoplasmic Membrane of Escherichia coli. Biochemistry, 1999. 38(22): p. 7235-7242.
44.Subbalakshmi C, S.N., Mechanism of antimicrobial action of Indolicidin. FEMS Microbiol Lett. , 1998. 160(1): p. 91-96.
45.Hsu, C.-H., Chen, C., Jou, M.-L. et al., Structural and DNA-binding studies on the bovine antimicrobial peptide, Indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucl. Acids Res., 2005. 33(13): p. 4053-4064.
46.Mozsolits, H.e.a., Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonace. Biochim Biophys Acta. , 2001. 1512(1): p. 64-76.
47.Friedrich, C.L.e.a., Structure and Mechanism of Action of an Indolicidin Peptide. Derivative with Improved Activity against Gram-positive Bacteria. Journal of biological chemistry, 2001. 276(26): p. 24015-24022.
48.Falla, T.J., and Hancock, R. E., Improved activity of a synthetic Indolicidin analog. Antimicrob. Agents Chemother., 1997. 41(4): p. 771-775.
49.Yew, W.S.a.H.E.K., The role of tryptophan residues in the hemolytic activity of stonustoxin, a lethal factor from stonefish (Synanceja horrida) venom. Biochimie, 2000. 82(3): p. 251-257.
50.Staubitz, P.e.a., Structure-function relationships in the tryptophan-rich, antimicrobial peptide Indolicidin. Journal of Peptide Science, 2001. 7(10): p. 552-564.
51.Subbalakshmi, C.e.a., Antibacterial and hemolytic activities of single tryptophan analogs of Indolicidin. Biochemical and Biophysical Research Communications, 2000. 274(3): p. 714-716.
52.Yinling Li, X.H., and Lukas K. Tamm, Thermodynamics of Fusion Peptide-Membrane Interactions. Biochemistry, 2003. 42: p. 7245-7251.
53.Haidacher, D., Vailaya, A. and Horváth, C., Temperature effects in hydrophobic interaction chromatography. Proc. Natl. Acad. Sci. U.S.A., 1996. 93: p. 2290-2295.
54.Boysen, R.I., Wang, Y., Keah, H.H. and Hearn, M.T.W., Observations on the origin of the non-linear van`t Hoff behaviour of polypeptides in hydrophobic environments. Biophys. Chem., 1999. 77: p. 79.
55.Vailaya, A.a.H., C., Exothermodynamic relationships in liquid chromatography. J. Phys. Chem. B, 1998. 102: p. 701.
56.Wimley WC, W.S., Quantitation of electrostatic and hydrophobic membrane interactions by equilibrium dialysis and reverse-phase HPLC. Anal Biochem. , 1993. 213: p. 213-217.
57.Ladokhin AS, S.M., White SH., Bilayer interactions of Indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophysical Journal, 1997. 72: p. 794-805.
58.Chen, W.Y.e.a., Effect of Temperature on Hydrophobic Interaction between Proteins and Hydrophobic Adsorbents: Studies by Isothermal Titration Calorimetry and the van't Hoff Equation. Langmuir, 2003. 19(22): p. 9395-9403.
59.Wiggins, P.M., Hydrophobic hydration, hydrophobic forces and protein folding. Physica A: Statistical and Theoretical Physics, 1997. 238(1-4): p. 113-128.
60.Barnes, P.e.a., Cooperative effects in simulated water. Nature, 1979. 282: p. 459-464.
|