博碩士論文 973211004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.116.36.221
姓名 江鴻志(Hung-chih Chiang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 結合X光乳房攝影之擴散光學 斷層影像重建
(Image Reconstruction of Diffuse Optical Tomographic Images Incorporating X-ray Mammography)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對應用於乳癌診斷之擴散光學斷層掃描系統,發展組織光學係數影像重建
演算法,並藉由乳房攝影之組織結構影像訊息,提昇光學係數影像之解析度。以擴散方
程式為模型,將演算法分為前向計算與反向重建二階段。其中,於前向計算使用有限元
素法求解擴散方程式,以獲得所需位置之理論光強度;於反向重建使用空間映射正則化
反算程序,帶入校正後之實測光強度,再經疊代最小化理論與實測光強度之差異,求得
光學係數之變化量。藉由設計不同型態之腫瘤假體案例,經數值模擬與假體實驗,驗證
本研究檢知腫瘤對比度、大小及位置等特性之能力,並以均方誤差、一維剖面曲線及解
析度分析,量化評估影像品質。從研究中得知,使用Tikhonov 正則化方法且使用對比
度高於背景之初始條件,可得較佳之影像品質。為助於後續之臨床相關研究,應發展估
計整體光學特性之方法,給定合理之初始條件,伴隨標準假體之研究,以協助光學特性
估計及量測系統特性校正。
摘要(英) This thesis aims to develop an improved image reconstruction algorithm, a dual-modality
scheme, for diffuse optical tomography (DOT) by employing the spatial information of X-ray
mammography. The conventional image reconstruction algorithm of DOT based on the
diffusion equation involves both the forward computation and the regularization of inverse
reconstruction. The forward computation uses finite element method (FEM) for solving
diffusion equation to evaluate the distribution of transmitted light on the basis of the light
source and presumed parameters of the object. The regularization of inverse reconstruction,
here, uses the structural information obtained from x-ray mammography to reconstruct the
distribution of the optical properties of the object from measured data sets. The improved
algorithm is validated using different designated cases including various size, contrast and
location of inclusions to background. As a comparison, both simulation data and phantom
experimental data are employed to reconstruct functional optical-coefficient images. Besides,
the errors of all reconstruction images were quantitatively evaluated by using a mean square
error (MSE). Furthermore, we also use a set of measures on the quantitative evaluation for a
range of resolutions including size, contrast, and location, which provide a comparable
estimate to the visual quality. These results show that the use of Tikhonov regularization
method and a higher initial contrast can provide a better quality of image reconstruction.
關鍵字(中) ★ 影像評估
★ 正則化反算
★ 雙模影像
★ 擴散光學斷層掃描
關鍵字(英) ★ regularization of inverse reconstruction
★ dual-modality imaging
★ diffuse optical tomography
★ quantitative evaluation of image quality
論文目次 摘要............................................................................................................................................I
Abstract ................................................................................................................................... II
誌謝.........................................................................................................................................III
目錄.........................................................................................................................................IV
圖目錄.....................................................................................................................................VI
表目錄.....................................................................................................................................IX
第一章 緒論.............................................................................................................................1
1.1 研究動機.....................................................................................................................1
1.2 乳房攝影與組織光學.................................................................................................2
1.3 常用量測系統簡介.....................................................................................................6
1.4 文獻回顧.....................................................................................................................7
1.5 研究範疇.....................................................................................................................8
第二章 理論基礎...................................................................................................................10
2.1 輻射傳播方程式(Radiation Transport Equation) ................................................10
2.2 擴散近似輻射傳播方程式.......................................................................................12
2.2.1 時域擴散方程式............................................................................................13
2.2.2 頻域擴散方程式............................................................................................13
2.3 光學係數影像重建演算法.......................................................................................14
2.4 擴散方程式前向計算...............................................................................................15
2.4.1 座標與邊界條件設定....................................................................................15
2.4.2 有限元素法求解擴散方程式........................................................................17
2.5 光學係數影像反算...................................................................................................19
2.5.1 前向數值計算與量測光強度差異最小化....................................................19
2.5.2 乳房攝影結構影像之初始估計....................................................................20
2.5.3 結合結構影像之正則化方法........................................................................21
第三章 影像系統驗證...........................................................................................................24
3.1 實驗裝置與量測系統...............................................................................................24
3.1.1 實驗用乳房假體設計製作............................................................................24
3.1.2 機電平台設計製作........................................................................................26
3.1.3 光電訊號量測及處理....................................................................................29
3.2 不同腫瘤型態設計...................................................................................................31
3.3 結果與討論................................................................................................................33
3.3.1 數值模擬反算................................................................................................33
3.3.2 實驗數據反算................................................................................................41
3.3.3 影像評估與解析度分析................................................................................46
第四章 結論與未來展望.......................................................................................................52
4.1 結論...........................................................................................................................52
4.2 未來展望...................................................................................................................53
參考文獻.................................................................................................................................54
附錄A. 正常乳房組織與腫瘤組織之光學係數...................................................................58
附錄B. 模擬與實驗反算結果之MSE..................................................................................60
附錄C. Case #1、#2、#3 之一維剖面曲線..........................................................................61
附錄D. Case #1、#2、#3 解析度圖表..................................................................................75
附錄E. Case #4、#5、#6、#7 之結果..................................................................................83
參考文獻 [1] Humphrey, L. L., Helfand, M., Chan, B. K. S. and Woolf S. H., “Breast cancer screening:a summary of the evidence for the U.S. Preventive Services Task Force,” Ann Intern
Med, Vol. 137, No. 5, pp. 347-367 (2002).
[2] Martini, Bartholomew, ESSENTIALS of ANATOMY & PHYSIOLOGY 2/e,林自勇等
譯,初版,解剖生理學,全威圖書,台北縣五股鄉,2003/09。
[3] Woodard, H. Q. and White, D. R., “The composition of body tissues,” The British
Journal of Radiology, Vol.59, pp.1209-1219 (1986).
[4] Das, B. B., Liu, Feng. and Alfano, R. R., “Time-resolved fluorescence and photon
migration studies in biomedical and model random media,” Rep. Prog. Phys., Vol. 60, pp.
227-292 (1997).
[5] Henyey, L. G. and Greenstein, J. L., “Diffuse radiation in the galaxy,” Astrophysical
Journal , Vol.93, pp.70-83 (1941).
[6] Tromberg, B. J., Cerussi, A. E., Jakubowski, D., Shah, N., Bevilacqua, F., Berger, A. J.,
Butler, J. and Holcombe, R. F., “Functional diffuse optical spectroscopy of human breast
tissue,” The 14th Annual Meeting of the IEEE, Vol. 1, pp. 259-260, 2001/01.
[7] Schmidt, F. E. W., “Development of a Time-Resolved Optical Tomography System for
Neonatal Brain Imaging,” Doctor of Philosophy, University of London, 1999/11.
[8] Ntziachristos, V., Yodh, A. G., Schnall, M. and Chance, B., “Concurrent MRI and
diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Nat.
Acad. Sci., Vol. 97, No. 6, pp.2767-2772 (2000).
[9] Gulsen, G., Birgul, O., Unlu, M. B., Shafiiha, R. and Nalcioglu, O., “Combined diffuse
optical tomography (DOT) and MRI system for cancer imaging in small animals,”
Technology in Cancer Research & Treatment, Vol. 5, No. 4, pp. 351-363 (2006).
[10] Srinivasan, S., Pogue, B. W., Carpenter, C., Jiang, S., Wells, W. A., Poplack, S. P.,
Kaufman, P. A. and Paulsen, K. D., “Developments in quantitative oxygen-saturation
imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid.
Redox Sig., Vol. 9, No. 8, pp. 1143-1156 (2007).
[11] Chen, N. G., Guo, P., Yan, S., Piao, D. and Zhu, Q., “Simultaneous near-infrared
diffusive light and ultrasound imaging,” Applied Optics, Vol. 40, No. 34, pp. 6367-6380
(2001).
[12] Zhu, Q., Huang, M., Chen, N. G., Zarfos, K., Jagjivan, B., Kane, M., Hedge, P. and
Kurtzman, S. H., “Ultrasound-Guided Optical Tomographic Imaging of Malignant and
Benign Breast Lesions: Initial Clinical Results of 19 Cases,” Neoplasia, Vol. 5, No. 5, pp.
379-388 (2003).
[13] Zhu, Q., Xu, C., Guo, P., Aguirre, A., Yuan, B., Huang, F., Castilo, D., Gamelin,
J.,Tannenbaum, S., Kane, M., Hegde, P. and Kurtzman, S., “Optimal Probing of Optical
Contrast of Breast Lesions of Different Size Located at Different Depths by US
Localization,” Technology in Cancer Research & Treatment, Vol. 5, No. 4, pp. 365-380
(2006).
[14] Zhang, Q., Brukilacchio, T. J., Li, A., Stott, J. J., Chaves, T., Hillman, E., Wu, T.,
Chorlton, M., Rafferty, E., Moore, R. H., Kopans, D. B. and Boas, D. A., 2005,
“Coregistered tomographic X-ray and optical breast imaging:Initial results,” Journal of
Biomedical Optics, Vol. 10, No.2, pp. 024033:1-024033:9 (2005).
[15] O’Leary, M. A., “Imaging with Diffuse Photon Density Waves,” Doctor of Philosophy,
University of Pennsylvania, 1996.
[16] Fang, Q., Carp, S. A., Selb, J., Boverman, G., Zhang, Q., Kopans, D. B., Moore, R. H.,
Miller, E. L., Brooks, D. H. and Boas, D. A., “Combined Optical Imaging and
Mammography of the Healthy Breast: Optical Contrast Derived From Breast Structure
and Compression, ” IEEE Transactions on Medical Imaging, Vol. 28, No. 1, pp. 30-42
(2009).
[17] 台灣平面顯示器材料與元件產業協會(TDMDA):常用光學名詞定義。取自
http://group.ednchina.com/Upload/2007/8/8/8d8e5ebe-23ab-467e-b996-605b8f6e451
f.pdf
[18] Yalavarthy, P. K., Pogue, B. W., Dehghani, H. and Paulsen, K. D., “Weight-matrix
structured regularization provides optimal generalized least-squares estimate in diffuse
optical tomography,” Med. Phys., Vol. 34, No. 6, pp. 2085-2098 (2007).
[19] Patterson, M. S., Chance, B. and Wilson, B. C., “Time resolved reflectance and
transmittance for the non-invasive measurement of tissue optical properties,” Applied
Optics, Vol. 28, No. 12, pp. 2331-2336 (1989).
[20] Paulsen, K. D. and Jiang, H., “ Spatially varying optical property reconstruction using a
finite element diffusion equation approximation,” Med. Phys., Vol.22, No.6, pp.691-701
(1995).
[21] Arridge, S. R., Schweiger, M., Hiraoka, M. and Delpy, D. T., “ A finite element approach
for modeling photon transport in tissue, ” Med. Phys., Vol.20, No.2, pp.299-309 (1993).
[22] Farrell, T. J., Patterson, M. S. and Wilson, B. C., “A diffusion theory model of spatially
resolved, steady-state diffuse reflectance for the noninvasive determination of tissue
optical properties in vivo, ” Med. Phys., Vol.19, No.4, pp.879-888 (1992).
[23] Egan, W. G. and Hilgenman, T. W. “Optical Properties of Inhomogeneous Materials.
Applications to Geology, Astronomy, Chemistry, and Engineering.” Academic Press.,
New York (1979).
[24] McBride, T. O., “Spectroscopic Reconstructed Near Infrared Tomographic Imaging for
Breast Cancer Diagnosis,” Doctor of Philosophy, Thayer School of Engineering
Dartmouth College, 2001.
[25] Brooksby, B., Jiang, S., Dehghani, H., Pogue, B. W., Paulsen, K. D., Weaver, J., Kogel,
C. and Poplack, S. P., “Combining near-infrared tomography and magnetic resonance
imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization
to incorporate magnetic resonance structure, ” Journal of Biomedical Optics, Vol.10,
No.5, pp. 051504:1-051504:10 (2005).
[26] Pouge, B. W. and Patterson, M. S., “Review of tissue simulating phantoms for optical
spectroscopy, imaging and dosimetry, ” Journal of Biomedical Optics, Vol.11, No.4, pp.
041102:1-041102:16 (2006).
[27] Swartling, J., Dam, J. S. and Andersson-Engels, S., “Comparison of spatially and
temporally resolved diffuse-reflectance measurement systems for determination of
biomedical optical properties, ” Applied Optics, Vol.42, No.22, pp. 4612-4620 (2003).
[28] Chen, C. H., “Design/Implementation and Verification of NIR Electro-optical Measuring
System for Medical Application, ” Master Thesis, National Central University, 2005.
[29] Valery, Tuchin, TISSUE OPTICS:Light Scattering Methods and Instruments for Medical
Diagnosis, 2nd Edition, SPIE, Bellingham, Washington USA, 2007.
[30] Arridge, S. R. and Lionheart W. R. B., “Nonuniqueness in diffusion-based optical
tomography, ” Optics Letters, Vol. 23, No. 11, pp. 882-884 (1998).
[31] Pan, M. C., Chen, C. H., Chen, L. Y., Pan, M. C. and Shyr, Y. M., “Highly resolved
diffuse optical tomography:a systematic approach using high-pass filtering for
value-preserved images, ” Journal of Biomedical Optics, Vol. 13, No. 2, pp.
024022:1-024022:14 (2008).
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2010-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明