參考文獻 |
[1] S. L. Oh, Y. R. Kim, L. Malkinski, A. Vovk, S. L. Whittenburg, E. M. Kim, and J. S. Jung, “Magnetic Properties of Nickel Nanostructures Grown in AAO Membrane,” J. Magn. Magn. Mater. 310 (2007) E827–E829.
[2] Y. Liu, L. Zhong, Z. Peng, Y. Song, and W. Chen, “Field Emission Properties of One-Dimensional Single CuO Nanoneedle by in Situ Microscopy,” J. Mater. Sci. 45 (2010) 3791–3796.
[3] C. Wei, C. I. Wang, F. C. Tai, K. Ting, and R. C. Chang, “The Effect of CNT Content on the Surface and Mechanical Properties of CNTs Doped Diamond Like Carbon Films,” Diam. Relat. Mater. 19 (2010) 562–566.
[4] J. Shirakashi, “Scanning Probe Microscope Lithography at the Micro- and Nano-Scales,” J. Nanosci. Nanotechno. 10 (2010) 4486-449.
[5] M. Haffner, A. Haug, R. T. Weitz, M. Fleischer, M. Burghard, H. Peisert, T. Chasse, and D. P. Kern, “E-beam Lithography of Catalyst Patterns for Carbon Nanotube Growth on Insulating Substrates,” Microelectron. Eng. 85 (2008) 768-773.
[6] A. Rashidian, D. M. Klymyshyn, M. Boerner, and J. Mohr, “Deep X-ray Lithography Processing for Batch Fabrication of Thick Polymer-based Antenna Structures,” J. Micromech. Microeng. 20 (2010) 025026.
[7] A. L. Lipson, D. J. Comstock, and M. C. Hersam, “Nanoporous Templates and Membranes Formed by Nanosphere Lithography and Aluminum Anodization,” Small 5 (2009) 2807-2811.
[8] G. H. Jeong, J. K. Park, K. K. Lee, J. H. Jang, C. H. Lee, H. B. Kang, C. W. Yang, and S. J. Suh, “Fabrication of Low-cost Mold and Nanoimprint Lithography Using Polystyrene Nanosphere,” Microelectron. Eng. 87 (2010) 51-55.
[9] Y. B. Zheng, S.J. Wang, and Y. H. Wang, “Fabrication of Tunable Nanostructure Arrays Using Ion-polishing-assisted Nanosphere Lithography,” J. Appl. Phys. 99 (2006) 034308.
[10] Z. Y. Ren, X. M. Zhang, J. J. Zhang, X. Li, and B. Yang, “Building Cavities in Microspheres and Nanospheres,” Nanotechnology 20 (2009) 065305.
[11] M. J. Xu, N. Lu, H. B. Xu, D. P. Qi, Y. D. Wang, and L. F. Chi, “Fabrication of Functional Silver Nanobowl Arrays via Sphere Lithography,” Langmutr. 25 (2009) 11216-11220.
[12] E. Ge´raud, V. Pre´vot, J. Ghanbaja, and F. Leroux, “Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template,” Chem. Mater. 18 (2006) 238-240.
[13] Y. Sun and H. H. Wang, “High-performance, Flexible Hydrogen Sensors that Use Carbon Nanotubes Decorated with Palladium Nanoparticles,” Adv. Mater. 19 (2007) 2818-2823.
[14] H. B. Xu, D. P. Qi, N. Lu, L. G. Gao, J. Y. Hao, Y. D. Wang, and L. F. Chi, “Broadband Antireflective Si Nanopillar Arrays Produced by Nanosphere Lithography,” Microelectron. Eng. 86 (2009) 850-852.
[15] J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband Antireflective Poly-Si Nanosponge for Thin Film Solar Cells,” Opt. Express. 17 (2009) 4646-4651.
[16] M. Kostylev, R. Magaraggia, F. Y. Ogrin, E. Sirotkin, V. F. Mescheryakov, N. Ross, and R. L. Stamps, “Broadband Antireflective Poly-Si Nanosponge for Thin Film Solar Cells,” IEEE T. Magn. 44 (2008) 2741-2744.
[17] K. Nishio, J. Koga, H. Ohtani, T. Yamaguchi, and F. Yonezawa, “Positional Dependence of Optical Absorption in Silicon Nanostructure,” J. Non-Cryst. Solids 293 (2001) 705-708.
[18] A. J. Williamson, J. C. Grossman, R. Q. Hood, A. Puzder, and G. Galli, “Quantum Monte Carlo Calculations of Nanostructure Optical Gaps:Application to Silicon Quantum Dots,” Phys. Rev. Lett. 89 (2002) 196803.
[19] L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon Nanostructure Cloak Operating at Optical Frequencies,” Nat. Photonics 3 (2009) 461-463.
[20] K. Nishioka, S. Horita, K. Ohdaira, and H. Matsumura, “Antireflection sSubwavelength Structure of Silicon Surface Formed by Wet Process Using Catalysis of Single Nano-sized Gold Particle,” Sol. Energ. Mat. Sol. C. 92 (2008) 919– 922.
[21] J. Zhao, A. Wang, and M. A. Green, “19.8% Efficient Honeycomb Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells,” Appl. Phys. Lett. 73 (1998) 1991-1993.
[22] K. C. Sahoo, M. K. Lin, E. Y. Chang, Y. Y. Lu, C. C. Chen, J. H. Huang, and C. W. Chang, “Fabrication of Antireflective Sub-Wavelength Structures on Silicon Nitride Using Nano Cluster Mask for Solar Cell Application,” Nanoscale res. lett. 4 (2009) 680-683.
[23] J. D. Plummer, M. D. Deal, and P. B. Griffin, “Silicon VLSI Technology,” 2008 Prentice Hall.
[24] A. J. Haes, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Self-Assembled Photonic and Magnetic Materials,” Mat. Res. Soc. Symp. 636 (2001) D4.8.1-6.l.
[25] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea,” Chapter 4 2003 Prentice Hall.
[26] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes,” Nucl. Instrum. Methods B39 (1989) 515-520.
[27] H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
[28] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,” Adv. Mater. 17 (2005) 1507-1511.
[29] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex-Particles on Substrates,” Langmuir 8 (1992) 3183-3190.
[30] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2004) 1-6.
[31] S. L. Cheng, S. L. Wong, S. W. Lu, and H. Chen, “Large-Area Co-Silicide Nanodot Arrays Produced by Colloidal Nanosphere Lithography and Thermal Annealing,” Ultramicroscopy. 108 (2008) 1200-1204.
[32] S. L. Cheng, C. H. Wang, and H. Chen, “Formation and Characterization of Periodic Arrays of Nickel Silicide Nanodots on Si(111) Substrates,” Jpn. J. Appl. Phys. 48 (2009) 06FE06.
[33] T. Ogi, L. B. Modesto-Lopez, F. Iskandar, and K. Okuyama, “Fabrication of A large Area Monolayer of Silica Particles on a Sapphire Substrate by a Spin Coating Method,” Colloid Surface A 297 (2007) 71–78.
[34] J. C. Hulteen and R. P. van Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[35] D. Wang and H. Mohwald, “Rapid Fabrication of Binary Colloidal Crystals by Stepwise Spin-Coating,” Adv. Mater. 16 (2004) 244-247.
[36] P. A. Kralchevskyt and K. Nagayama, “Capillary Forces between Colloidal Particles,” Langmuir 10 (1994) 23-36.
[37] A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir 12 (1996) 1303-1311.
[38] F. Sun, W. Cai, Y. Li, L. Jia, and F. Lu, “Direct Growth of Mono- and Multilayer Nanostructured Porous Films on Curved Surfaces and Their Application as Gas Sensors,” Adv. Mater. 17 (2005) 2872–2877.
[39] K. Chen, S. V. Stoianov, J. Bangerter, and H. D. Robinson, “Restricted Meniscus Convective Self-Assembly,” J. Colloid Interf. Sci. 344 (2010) 315–320.
[40] M. H. Kim, S. H. lm, and O. O. Park, “Rapid Fabrication of Two- and Three Dimensional Colloidal Crystal Films via Confined Convective Assembly,” Adv. Funct. Mater. 15 (2005) 1329-1335.
[41] H. Q. Li, J. Low, K. S. Brown, and N. Q. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated with Self-Assembled Nanosphere Template,” IEEE Sene. J. 8 (2008) 880-884.
[42] M. Retsch, Z. C. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air/Water Interface,” Macromol. Chem. Phys. 210 (2009) 230-241.
[43] G. H. Jeong, J. K. Park, K. K. Lee, J. H. Jang, C. H. Lee, H. B. Kang, C. W. Yang, and S. J. Suh, “Fabrication of Low-Cost Mold and Nanoimprint Lithography Using Polystyrene Nanosphere,” Microelectron. Eng. 87 (2010) 51-55.
[44] P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved Deposition of Large Scale Ordered Nanosphere Monolayers via Liquid Surface Self-Assembly,” Mater. Sci. Eng. B-Adv. 165 (2009) 186-189.
[45] C. M. Zhou and D. Gall, “Surface Patterning by Nanosphere Lithography for Layer Growth with Ordered Pores,” Thin Solid Films 516 (2007) 433-437.
[46] G. X. Zhang, S. H. Sun, M. I. Ionescu, H. Liu, Y. Zhong, R. Y. Li, and X. L. Sun, “Controlled Growth/Patterning of Ni Nanohoneycombs on Various Desired Substrates,” Langmuir 26 (2010) 4346-4350.
[47] C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105 (2001) 5599-5611.
[48] K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes,” Nano Lett. 3 (2003) 13-18.
[49] Y. Wang, Y. Wang, J. Rybczynski, D. Z. Wang, K. Kempa, Z. F. Ren, W. Z. Li, and B. Kimball, “Periodicity and Alignment of Large-Scale Carbon Nanotubes Arrays,” Appl. Phys. Lett. 85 (2004) 4741-4743.
[50] T. Y. Tsai, T. H. Chen, N. H. Tai, S. C. Chang, H. C. Hsu, and T. J. Palathinkal, “The Fabrication of a Carbon Nanotube Array Using a Catalyst-Poisoning Layer in the Inverse Nanosphere Lithography Method,” Nanotechnology 20 (2009) 305303
[51] K. H. Park, S. Lee, K. H. Koh, R. L. KBK, and T. W. Milne, “Advanced Nanosphere Lithography for the Areal-Density Variation of Periodic Arrays of Vertically Aligned Carbon Nanofibers,” J. Appl. Phys. 97 (2005) 024311-024314.
[52] Y. F. Wang, J. H. Zhang, X. L. Chen, X. Li, Z. Q. Sun, K. Zhang, D. Y. Wang, and B. Yang, “Morphology-Controlled Fabrication of Polygonal ZnO Nanobowls Templated From Spherical Polymeric Nanowell Arrays,” J. Colloid. Interf. Sci. 322 (2008) 327-332.
[53] J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Morphology-Controlled 2D Ordered Microstructure Arrays by Surface Modification of Colloidal Template,” J. Nanosci. Nanotechno. 8 (2008) 4436-4440
[54] Y. Li, W. Cai, and G. Duan, “Ordered Micro/Nanostructured Arrays Based on the Monolayer Colloidal Crystals,” Chem. Mater. 20 (2008) 615-624.
[55] D. Byrne, A. Schilling, J. F. Scott, and J. M. Gregg, “Ordered Arrays of Lead Zirconium Titanate Nanorings,” Nanotechnology 19 (2008) 165608-1~5.
[56] F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien, “Ultrahigh-Density Arrays of Ferromagnetic Nanorings on Macroscopic Areas,” Adv. Mater. 16 (2004) 2155-2159.
[57] Y. Zhang, X. Wang, and Y. Wang, “Ordered Nanostructures Array Fabricated by Nanosphere Lithography,” J. Alloys Compd. 452 (2008) 473–477.
[58] A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks,” Small 1 (2005) 439-444.
[59] D. G. Choi, H. K. Yu, and S. M. Yang, “Colloidal Lithographic Nanopatterning via Reactive Ion Etching,” JACS 126 (2004) 7019-7025.
[60] Y. Li, E. J. Lee, W. Cai, K. Y. Kim, and S. O. Cho, “Unconventional Method for Morphology-Controlled Carbonaceous Nanoarrays Based on Electron irradiation of a Polystyrene Colloidal Monolayer,” ACSNano 2 (2008) 1108-1112.
[61] Y. Li, N. Koshizaki, Y. Shimizu, L. Li, S. Y. Gao, and T. Sasaki, “Unconventional Lithography for Hierarchial Micro/Nanostructure Arrays with Well-Aligned 1D Crystalline Nanostructures: Design and Creation Based on the Colloidal Monolayer,” ACS Appl. Mater. Inter. 1 (2009) 2580-2585.
[62] W. Cai, G. Duan, Y. Li, Z. Li, B. Cao, and Y. Luo, “Transferable Ordered Ni Hollow Sphere Arrays Induced by Electrodeposition on Colloidal Monolayer,” J. Phys. Chem. B. 110 (2006) 7184-7188.
[63] W. Cai, G. Duan, Y. Luo, Z. Li, and Y. Lei, “Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition,” J. Phys. Chem. B. 110 (2006) 15729-15733.
[64] M. E. Kiziroglou, X. Li, D. C. Gonzalez, and C. H. de Groot, “Orientation and Symmetry Control of Inverse Sphere Magnetic Nanoarrays by Guided Self-assembly,” J. Appl. Phys. 100 (2006) 113720-1~5.
[65] P. N. Bartlett, M. A. Ghanem, P. D. Groot, and A. Zhukov, “A Double Templated Electrodeposition Method for the Fabrication of Arrays of Metal Nanodots,” Electrochemistry Communications 6 (2004) 447–453.
[66] Y. W. Chung, I. C. Leu, J. H. Lee, J. H. Yen, and M. H. Hona, “Fabrication of Various Nickel Nanostructures by Manipulating the One-Step Electrodeposition Process,” J. Electrochem. Soc. 154 (2007) E77-E83.
[67] Z. Chen, P. Zhan, Z. Wang, J. Zhang, W. Zhang, N. Ming, C. Ting, and P. Sheng, “Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating,” Adv. Mater. 16 (2004) 417-422.
[68] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching,” Appl. Phys. Lett. 93 (2008) 133109-1~133109-3.
[69] W. Li, W. M. Zhao, and P. Sun, “Fabrication of Highly Ordered Metallic Arrays and Silicon Pillars with Controllable Size Using Nanosphere Lithography,” Physica. E 41 (2009) 1600-1603.
[70] W. Li, L. Xu, W. M. Zhao, P. Sun, X. F. Huang, and K. J. Chen, “Fabrication of Large-Scale Periodic Silicon Nanopillar Arrays for 2D Nanomold Using Modified Nanosphere Lithography,” Appl. Surf. Sci. 253 (2007) 9035-9038.
[71] H. B. Xu, N. Lu, D. P. Qi, L. G. Gao, J. Y. Hao, Y. D. Wang, and L. F. Chi, “Broadband Antireflective Si Nanopillar Arrays Produced by Nnanosphere Lithography,” Microelectron. Eng. 86 (2009) 850-852.
[72] X. Li and P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77 (2000) 2572-2574.
[73] E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10 (2010) 1082-1087.
[74] H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic Antireflective Si Nanopillar Arrays,” Small 4 (2008) 1972-1975.
[75] M. Steinert, J. Acker, S. Oswald, and W. Wetzig, “Study on the Mechanism of Silicon Etching in HNO3-Rich HF/HNO3 Mixtures,” J. Phys. Chem. C 111 (2007) 2133-2140.
[76] I. Zubel and M. Kramkowska, “Development of Etch Hillocks on Different Si(hkl) Planes in Silicon Anisotropic Etching,” Surf. Sci. 602 (2008) 1712–1721.
[77] M. R. Baklanov, I. A. Badmaeva, R. A. Donaton, L. L. Sveshnikova, W. Storm, and K. Maex, “Kinetics and Mechanism of the Etching of CoSi2 in HF-Based Solutions,” J. Electrochem. Soc. 143 (1996) 3245-3251.
[78] S. Y. Zhu, G. P. Ru, C. Detavernier, R. L. Van Meirhaeghe, E. Cardon, and B. Z. Li, “The Dependence of the Etching Property of CoSi2 Films in Diluted HF Solutions on the Formation Conditions,” Appl. Surf. Sci. 178 (2001) 44-49.
[79] B. Wang, S. J. Chua, and J. Teng, “Novel 2D Ordered Arrays of Nanostructures Fabricated Through Silica Masks Formed by Bilayer Colloidal Crystals as Templates,” IEEE (2005).
[80] S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and Nanobored Particle Arrays Sculpted Using Colloidal Lithography,” Adv. Funct. Mater. 16 (2006) 33-40.
[81] S. M. Yang, D. G. Choi, S. Kim, and E. Lee, “Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks,” J. Am. Chem. Soc. 127 (2005) 1636-1637.
[82] A. Sinitskii, S. Neumeier, J. Nelles, M. Fischler, and U. Simon, “Ordered Arrays of Silicon Pillars with Controlled Height and Aspect Ratio,” Nanotechnology 18 (2007) 305307-1~305307-6.
[83] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9 (2009) 279-282.
[84] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. Zhao, P. Sun, F. Song, J. Wan, and K. Chen, “Field Emission from a Periodic Amorphous Silicon Pillar Array Fabricated by Modified Nanosphere Lithography,” Nanotechnology 19 (2008) 135308-1~135308-5.
[85] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama,Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai,, “Analysis of Resistance Behavior in Ti and Ni-Salicided Polysilicon Films,” IEEE Trans. Electron Devices ED-41 (1994) 2305-2317.
[86] I. J. van Gurp and C. Langereis, “Cobalt Silicide Layer on Si Structure and Growth,” J. Appl. Phys. 46 (1975) 4301-4307.
[87] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 Formation through SiO2,” Thin Solid Films 386 (2001) 19-26.
[88] K. Maex, “Silicides for Integrated Circuits: TiSi2 and CoSi2,” Mater. Sc. Eng. R11 (1993) 53-153.
[89] R. T. Tung and F. Schrey, “Increased Uniformity and Thermal Stability of CoSi2 Thin Films by Ti Capping,” Appl. Phys. Lett. 67 (1995) 2164-2166.
[90] People, “Indirect band gap of coherently strained GexSil-x bulkalloys on <001> silicon substrates,” Phys. Rev. B32 (1985) 1405.
[91] D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Öztürk, “Stability of C54 Titanium Germanosilicide on a Silicon-Germanium Alloy Substrate,” J. Appl. Phys. 77 (1995) 5107-5114.
[92] R. People, “Indirect Band Gap of Coherently Strained GexSil-x Bulk Alloys on <001> Silicon Substrates, ” Phys. Rev. 33 (1986) 1451.
[93] Y. V. Ponomarev, “Gate-work Function Engineering Using Poly-(Si,Ge) for High-Performance 0.18 μm CMOS Technology,” IEDM Tech. Digest 33 (1997) 3.1-3.4.
[94] P. T. Goeller, B. I. Boyanov, D. E. Sayers, R. J. Nemanich, A. F. Myers, and E. B. Steel, “Germanium Segregation in the Co/SiGe/Si(001) Thin Film System,” J. Mater. Res. 14 (1999) 4372-4384.
[95] J. B. Lai and L. J. Chen, “Effects of Composition on the Formation Temperatures and Electrical Resistivities of C54 Titanium Germanosilicide in Ti–Si12xGex systems,” J. Appl Phys. 86 (1999) 1340–1345.
[96] R. A. Donaton and K. Maex, “Co Silicide Formation on SiGeC/Si and SiGe/Si Layers,” Appl. phys. lett. 70 (1997) 1266-1268.
[97] B. I. Boyanov, P. T. Goeller, D. E. Sayers, and R. J. Nemanich, “Film Thickness Effects in the Co–Si12xGex Solid Phase Reaction,” J. appl. phys. 84 (1998) 4285-4291.
[98] D. O. Shin, S. H. Ban, Y. S. Ahn, Y.S. Lee, N.E. Lee, and K.H. Shimb, “Structural and Electrical Characteristics of Epitaxial CoSi2 Grown on n-Si0.83Ge0.17yn-Si(001) by Reactive Chemical Vapor Deposition Using a Si Capping Layer,” Thin solid films 458 (2004) 269–273.
[99] Y. W. Ok, S. H. Kim, Y. J. Song, K. H. Shim, and T. Y. Seong, “Structural Properties of Nickel Silicided Si1-xGex(001) Layers,” Semicond. Sci. Technol. 19 (2004) 285–290.
[100] C. A. Chang, and J. S. Song, “Selectively Enhanced Silicide Formation by a Gold Interlayer: Probing the Dominant Diffusing Species and Reaction Mechanisms During Thin-Film Reactions,” Appl. phys. lett. 51 (1987) 572–574.
[101] S. L. Cheng and H.Y. Chen, “Effects of a Thin Au Interlayer on the Formation of Low-Resistivity CoSi2 on (001)Si Substrate,” Thin solid films 516 (2008) 8797–8803.
[102] J. Y. Yew, H. C. Tseng, L. J. Chen, K. Nakamura, and C. Y. Chang, “Formation of Self-Aligned CoSi2 on Selective Epitaxial Growth Silicon Layer on (001)Si Inside 0.1–0.6 mm Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett. 69 (1996) 3692-3694.
[103] W. W. Wu, T. F. Chiang, S. L. Cheng, S. W. Lee, and L. J. Chen, “Enhanced Growth of CoSi2 on Epitaxial Si0.7Ge0.3 with a Sacrificial Amorphous Si Interlayer,” Appl. phys. lett. 81 (2002) 820-822.
[104] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique”, Langmuir 20 (2004) 10998-11004.
[105] C. D. Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura, and K. Nagayama, “Effect of Growth Conditions on the Structure of Two-Dimensional Latex Crystals: Experiment”, Colloid. Polym. Sci. 277 (1999) 914-930.
[106] H. Cong and W. Cao, “Colloidal Crystallization Induced by Capillary Force”, Langmuir 19 (2003) 8177-8181.
[107] P. T. Goeller, B. I. Boyanov, D. E. Sayers, and R. J. Nemanich, “Structure and Stability of Cobalt-Silicon-Germanium Thin Films,” Nucl. Instrum. Methoods B 133 (1997) 84-89.
[108] P. T. Goeller, B. I. Boyanov, D. E. Sayers, and R. J. Nemanich, “Germanium sSegregation in the Co/SiGe/Si(001) Thin Film System,” J. Mater. Res. 14 (1999) 4372–4384.
[109] S. L. Cheng, S. L. Wong, S. W. Lu, and H. Chen, “Large-area Co-silicide Nanodot Arrays Produced by Colloidal Nanosphere Lithography and Thermal Annealing,” Ultramicroscopy 108 (2008) 1200– 1204.
[110] S. L. Cheng, S. W. Lu, S. L. Wong, C. C. Chang, and H. Chen, “Fabrication of 2D Ordered Arrays of Cobalt Silicide Nanodots on (0 0 1)Si Substrates,” J. Cryst. Growth 300 (2007) 473–477.
[111] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[112] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 58 (1998) R16024-R16026.
[113] H. F. Yan , Y. J. Xing , Q. L. Hang , D. P. Yu , Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid–Liquid–Solid Mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[114] W. T. Lai and P. W. Li, “Growth Kinetics and Related Physical/Electrical Properties of Ge Quantum Dots Formed by Thermal Oxidation of Si1-xGex-on-Insulator,” Nanotechnology 18 (2007) 145402.
[115] S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, and H. Chen, “Fabrication of Periodic Nickel Silicide Nanodot Arrays Using Nanosphere Lithography,” Thin Solid Films 494 (2006) 307–310.
[116] H. E. Jeong, S. H. Lee, J. K. Kim, and K. Y. Suh, “Nanoengineered Multiscale Hierarchical Structures with Tailored,” Langmuir 22 (2006) 1640-1645.
[117] C. W. Yang, H. E. Feng, and P. F. HAO, “The Apparent Contact Angle of Water Droplet on the Micro-Structured Hydrophobic Surface,” Sci. China Chem. 53 (2010) 912-916.
[118] A. Winkleman, G. Gotesman, A. Yoffe, and R. Naaman, “Immobilizing a Drop of Water: Fabricating Highly Hydrophobic Surfaces that Pin Water Droplets,” Nano Lett. 8 (2008) 1241-1245.
[119] J. Bae, H. Kim, X. M. Zhang, C. H. Dang, Y. Zhang, Y. J. Choi, A. Nurmikko, and Z. L. Wang, “Si Nanowire Metal-Insulator-Semiconductor Photodetectors as Efficient Light Harvesters,” Nanotechnology 21 (2010) 095502-1~095502-5.
[120] J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, “Integrated ZnO Nanotips on GaN Light Emitting Diodes for Enhanced Emission Efficiency,” Appl. Phys. Lett. 90 (2007) 203515-1~ 203515-3.
[121] Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. Hea, “Surface Profile-Controlled Close-Packed Si Nanorod Arrays for Self-Cleaning Antireflection Coatings,” J. Appl. Phys. 106 (2009) 114310-1-114310-4.
[122] J. Han, S. Lu, Q. Li, X. Li, and J. Wang, “Anisotropic Wet etching Silicon Tips of Small Opening Angle in KOH Solution with the Additions of I2/KI,” Sensor. Actuat. A 152 (2009) 75–79.
|