博碩士論文 973204011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.21.21.209
姓名 楊鎮宇(Chen-Yu Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米球微影術製備規則有序排列之低電阻鈷矽化物及矽單晶奈米點陣列之研究
(Fabrication of Well-ordered Arrays of Low-Resistivity CoSi2 nanodots and Single Crystalline Si Nanodots by Nanosphere Lithography.)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中分別利用自然滴製法與LB-like法在矽晶及矽鍺基材上製備出大面積排列規則的PS球陣列結構充當模板(Template),並以此模板製備出不同尺度奈米點陣列,同時針對其界面反應、晶體結構、成長機制、表面性質進行鑑定分析。
在與矽鍺基材反應之實驗方面,我們首度結合自然滴製法與蒸鍍適當厚度比例之Co/a-Si雙薄膜結構,成功地在矽鍺基材上製備出大面積規則排列且尺寸均一之低電阻CoSi2奈米點陣列,有效地降低反應過程中鍺偏析現象發生及提高其熱穩定性。由AFM、TEM與SAED分析結果發現,在400 ℃熱退火處理後Co/a-Si點陣試片會先形成多晶高電阻CoSi相,但經500 ℃-950 ℃之熱退火處理後,點陣會轉化生成多晶低電阻CoSi2相。且由橫截面TEM觀察發現在SiGe晶片上所生成之CoSi2奈米點陣介面十分平整,顯示奈米尺度Co/a-Si有助於CoSi2相生成。而當退火熱處理溫度升高至1000 ℃時,則會發現奈米線結構的產生,由TEM、SAED及EDS分析,可得知此奈米線結構主要是由矽、氧成分所組成之SiO2奈米線,其大小約為15-35 nm且為非晶質結構,並推測其生長為固-液-固(Solid-Liquid-Solid, SLS) 之成長機制。
本研究也首度結合奈米球模板與選擇性化學濕式蝕刻技術,成功在矽晶基材上製備出大小與高度可控制之規則有序矽單晶奈米點陣列結構,並深入探討其性質。經水滴接觸角實驗發現,表面生成矽單晶奈米點陣列之試片其接觸角呈現大幅度增加,可達112°-124°,此種因表面奈米結構造成接觸角提升的現象可用Cassie Model解釋。而在利用紫外光-可見光光譜儀分析中可發現,表面具有奈米點陣列結構的矽晶試片於可見光波長範圍內(400-800 nm)其反射率相較於未經蝕刻反應之矽晶片(33 %)會大幅下降至16 %-22 %,其主要是由於矽單晶奈米點陣提供了入射光額外的散射機制,增加入射光在內部的行徑距離使入射光被吸收的程度提高所致。
摘要(英) The present study has demonstrated that well-ordered arrays of polystyrene(PS) nanosphere were successfully fabricated on (001)Si and (001)Si0.7Ge0.3 substrates by using the drop-coating and LB-like technique. The self-assembled PS nanosphere arrays were used as the deposition templates.
Large-area, well-ordered arrays of low-resistivity CoSi2 nanodots were successfully fabricated on (001)Si0.7Ge0.3 substrate by combining the nanosphere lithography and Co/amorphous-Si bilayer structure. Based on the AFM, TEM and SAED analyse, polycrystalline CoSi nanodots were found to form in sample annealed at 400 ℃.As the annealing temperatures were increased to 500-950 ℃, low-resistivity CoSi2 nanodots were successfully grown on (001)Si0.7Ge0.3 substrate. From cross-sectional TEM observation, the interface between CoSi2 nanodot and (001)Si0.7Ge0.3 substrate was found to be rather smooth. For the Co/a-Si nanodot samples further annealed at 1000 ℃, many SiOx nanowires of 15-35 nm in diameter were observed to grow from the CoSi2 nanodot regions. The growth process of amorphous SiOx nanowires could be explained by the solid–liquid–solid (SLS) mechanism.
By combining the nanosphere template and selective chemical etching, large-area size- and height-tunable Si nanodot arrays were successfully fabricated on (001)Si substrates. From the water contact angle measurements, the surface of HF-treated Si nanodot arrays exhibited strong hydrophobic characteristics. The hydrophobic behavior of Si nanodots could be explained by the Cassie model. The UV-Vis analysis results revealed that the reflectance of Si substrate with Si nanodot arrays was found to decrease from 33 % to 16-22 % in visible light range (400-800 nm). The low visible reflectance of Si nanodots samples is due to the fact that surface of Si nanodots sample is rough, resulting in trapping and scattering of light.
關鍵字(中) ★ 奈米點陣列
★ 矽者基材
★ 鈷矽化物
★ 奈米球微影
★ 選擇性化學蝕刻
關鍵字(英) ★ nanodot
★ SiGe substrate
★ cobalt silicide
★ nanosphere lithography
★ elective chemical etching
論文目次 第一章 簡介............................................1
1-1 前言...............................................1
1-2奈米球微影術........................................2
1-2-1奈米球微影術的發展................................2
1-2-2各種奈米球自組裝技術..............................4
1-2-2-1 自然滴製法.....................................4
1-2-2-2 旋轉塗佈法.....................................5
1-2-2-3 LB-Like 技術...................................5
1-2-3利用奈米球微影術製備各式奈米結構..................6
1-2-3-1金屬薄膜沉積技術................................7
1-2-3-2電化學沉積技術 ..................................8
1-2-3-3反應蝕刻技術....................................8
1-3蝕刻技術............................................9
1-3-1濕式蝕刻..........................................9
1-3-1-1矽晶基材濕式蝕刻..........................10
1-3-1-2選擇性矽晶基材濕式蝕刻....................10
1-3-2乾式蝕刻.........................................11
1-4 金屬矽化物........................................12
1-4-1 金屬矽化物在半導體工業上的應用及其製程..........12
1-4-2 鈷金屬矽化物................................14
1-5 矽鍺元件..........................................15
1-5-1 矽鍺元件中之金屬接觸............................15
1-6 矽鍺基材上之金屬矽化物...........................16
1-7 研究動機..........................................17
第二章 實驗步驟.......................................19
2-1 奈米球模板之製備..................................19
2-1-1 基材使用前處理..................................19
2-1-2 奈米球膠體溶液配製..............................19
2-1-3 自組裝奈米球陣列................................20
2-2大面積低電阻相鈷金屬矽化物奈米點陣列之製備.........20
2-2-1金屬薄膜蒸鍍.....................................21
2-2-2奈米球舉離.......................................21
2-2-3退火熱處理.......................................21
2-3大面積有序矽單晶奈米點陣列結構之製程...............22
2-3-1 反應性離子蝕刻控制奈米球模板球徑大小............22
2-3-2金屬薄膜沉積與奈米球舉離.........................22
2-3-3退火熱處理.......................................23
2-3-4選擇性化學濕式蝕刻...............................23
2-4 分析儀器與鑑定....................................23
2-4-1 掃描式電子顯微鏡(SEM)...........................23
2-4-2 原子力顯微鏡(AFM)...............................23
2-4-3 穿透式電子顯微鏡(TEM)與X光能量散佈光譜儀........24
2-4-4接觸角(Contact Angle)量測儀......................24
2-4-5紫外光-可見光光譜儀(UV-Vis)......................25
第三章 結果與討論.....................................26
3-1 奈米球模板之製備..................................26
3-2於矽鍺基材上沉積Co/a-Si雙薄膜結構製備大面積低電阻鈷矽化物奈米點陣............................................28
3-2-1 Co/a-Si雙薄膜結構及其矽化反應...................29
3-2-2 Co/a-Si雙薄膜結構及其矽化物之表面高低形貌分析...30
3-2-3 Co/a-Si雙薄膜結構與Si0.7Ge0.3基材之界面反應分析 .31
3-3矽晶基材上製備大面積矽單晶奈米點陣列...............36
3-3-1 矽單晶奈米點陣列外觀形貌觀察....................36
3-3-2 接觸角量測分析表面潤濕性質......................38
3-3-3 可見光-紫外光光譜儀量測分析.....................40
第四章 結論與未來展望 .................................42
4-1 結論..............................................43
4-2 未來展望..........................................44
4-2-1矽鍺基材上製備不同金屬矽化物有序奈米點陣列.......44
4-2-2不同矽基材上製備大面積規則矽單晶奈米點陣列結構...44
4-2-3以KOH + KI蝕刻法製備新穎矽基奈米結構.............44
參考文獻..............................................45
表目錄................................................54
圖目錄................................................57
參考文獻 [1] S. L. Oh, Y. R. Kim, L. Malkinski, A. Vovk, S. L. Whittenburg, E. M. Kim, and J. S. Jung, “Magnetic Properties of Nickel Nanostructures Grown in AAO Membrane,” J. Magn. Magn. Mater. 310 (2007) E827–E829.
[2] Y. Liu, L. Zhong, Z. Peng, Y. Song, and W. Chen, “Field Emission Properties of One-Dimensional Single CuO Nanoneedle by in Situ Microscopy,” J. Mater. Sci. 45 (2010) 3791–3796.
[3] C. Wei, C. I. Wang, F. C. Tai, K. Ting, and R. C. Chang, “The Effect of CNT Content on the Surface and Mechanical Properties of CNTs Doped Diamond Like Carbon Films,” Diam. Relat. Mater. 19 (2010) 562–566.
[4] J. Shirakashi, “Scanning Probe Microscope Lithography at the Micro- and Nano-Scales,” J. Nanosci. Nanotechno. 10 (2010) 4486-449.
[5] M. Haffner, A. Haug, R. T. Weitz, M. Fleischer, M. Burghard, H. Peisert, T. Chasse, and D. P. Kern, “E-beam Lithography of Catalyst Patterns for Carbon Nanotube Growth on Insulating Substrates,” Microelectron. Eng. 85 (2008) 768-773.
[6] A. Rashidian, D. M. Klymyshyn, M. Boerner, and J. Mohr, “Deep X-ray Lithography Processing for Batch Fabrication of Thick Polymer-based Antenna Structures,” J. Micromech. Microeng. 20 (2010) 025026.
[7] A. L. Lipson, D. J. Comstock, and M. C. Hersam, “Nanoporous Templates and Membranes Formed by Nanosphere Lithography and Aluminum Anodization,” Small 5 (2009) 2807-2811.
[8] G. H. Jeong, J. K. Park, K. K. Lee, J. H. Jang, C. H. Lee, H. B. Kang, C. W. Yang, and S. J. Suh, “Fabrication of Low-cost Mold and Nanoimprint Lithography Using Polystyrene Nanosphere,” Microelectron. Eng. 87 (2010) 51-55.
[9] Y. B. Zheng, S.J. Wang, and Y. H. Wang, “Fabrication of Tunable Nanostructure Arrays Using Ion-polishing-assisted Nanosphere Lithography,” J. Appl. Phys. 99 (2006) 034308.
[10] Z. Y. Ren, X. M. Zhang, J. J. Zhang, X. Li, and B. Yang, “Building Cavities in Microspheres and Nanospheres,” Nanotechnology 20 (2009) 065305.
[11] M. J. Xu, N. Lu, H. B. Xu, D. P. Qi, Y. D. Wang, and L. F. Chi, “Fabrication of Functional Silver Nanobowl Arrays via Sphere Lithography,” Langmutr. 25 (2009) 11216-11220.
[12] E. Ge´raud, V. Pre´vot, J. Ghanbaja, and F. Leroux, “Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template,” Chem. Mater. 18 (2006) 238-240.
[13] Y. Sun and H. H. Wang, “High-performance, Flexible Hydrogen Sensors that Use Carbon Nanotubes Decorated with Palladium Nanoparticles,” Adv. Mater. 19 (2007) 2818-2823.
[14] H. B. Xu, D. P. Qi, N. Lu, L. G. Gao, J. Y. Hao, Y. D. Wang, and L. F. Chi, “Broadband Antireflective Si Nanopillar Arrays Produced by Nanosphere Lithography,” Microelectron. Eng. 86 (2009) 850-852.
[15] J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband Antireflective Poly-Si Nanosponge for Thin Film Solar Cells,” Opt. Express. 17 (2009) 4646-4651.
[16] M. Kostylev, R. Magaraggia, F. Y. Ogrin, E. Sirotkin, V. F. Mescheryakov, N. Ross, and R. L. Stamps, “Broadband Antireflective Poly-Si Nanosponge for Thin Film Solar Cells,” IEEE T. Magn. 44 (2008) 2741-2744.
[17] K. Nishio, J. Koga, H. Ohtani, T. Yamaguchi, and F. Yonezawa, “Positional Dependence of Optical Absorption in Silicon Nanostructure,” J. Non-Cryst. Solids 293 (2001) 705-708.
[18] A. J. Williamson, J. C. Grossman, R. Q. Hood, A. Puzder, and G. Galli, “Quantum Monte Carlo Calculations of Nanostructure Optical Gaps:Application to Silicon Quantum Dots,” Phys. Rev. Lett. 89 (2002) 196803.
[19] L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon Nanostructure Cloak Operating at Optical Frequencies,” Nat. Photonics 3 (2009) 461-463.
[20] K. Nishioka, S. Horita, K. Ohdaira, and H. Matsumura, “Antireflection sSubwavelength Structure of Silicon Surface Formed by Wet Process Using Catalysis of Single Nano-sized Gold Particle,” Sol. Energ. Mat. Sol. C. 92 (2008) 919– 922.
[21] J. Zhao, A. Wang, and M. A. Green, “19.8% Efficient Honeycomb Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells,” Appl. Phys. Lett. 73 (1998) 1991-1993.
[22] K. C. Sahoo, M. K. Lin, E. Y. Chang, Y. Y. Lu, C. C. Chen, J. H. Huang, and C. W. Chang, “Fabrication of Antireflective Sub-Wavelength Structures on Silicon Nitride Using Nano Cluster Mask for Solar Cell Application,” Nanoscale res. lett. 4 (2009) 680-683.
[23] J. D. Plummer, M. D. Deal, and P. B. Griffin, “Silicon VLSI Technology,” 2008 Prentice Hall.
[24] A. J. Haes, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Self-Assembled Photonic and Magnetic Materials,” Mat. Res. Soc. Symp. 636 (2001) D4.8.1-6.l.
[25] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea,” Chapter 4 2003 Prentice Hall.
[26] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes,” Nucl. Instrum. Methods B39 (1989) 515-520.
[27] H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
[28] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,” Adv. Mater. 17 (2005) 1507-1511.
[29] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex-Particles on Substrates,” Langmuir 8 (1992) 3183-3190.
[30] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2004) 1-6.
[31] S. L. Cheng, S. L. Wong, S. W. Lu, and H. Chen, “Large-Area Co-Silicide Nanodot Arrays Produced by Colloidal Nanosphere Lithography and Thermal Annealing,” Ultramicroscopy. 108 (2008) 1200-1204.
[32] S. L. Cheng, C. H. Wang, and H. Chen, “Formation and Characterization of Periodic Arrays of Nickel Silicide Nanodots on Si(111) Substrates,” Jpn. J. Appl. Phys. 48 (2009) 06FE06.
[33] T. Ogi, L. B. Modesto-Lopez, F. Iskandar, and K. Okuyama, “Fabrication of A large Area Monolayer of Silica Particles on a Sapphire Substrate by a Spin Coating Method,” Colloid Surface A 297 (2007) 71–78.
[34] J. C. Hulteen and R. P. van Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[35] D. Wang and H. Mohwald, “Rapid Fabrication of Binary Colloidal Crystals by Stepwise Spin-Coating,” Adv. Mater. 16 (2004) 244-247.
[36] P. A. Kralchevskyt and K. Nagayama, “Capillary Forces between Colloidal Particles,” Langmuir 10 (1994) 23-36.
[37] A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir 12 (1996) 1303-1311.
[38] F. Sun, W. Cai, Y. Li, L. Jia, and F. Lu, “Direct Growth of Mono- and Multilayer Nanostructured Porous Films on Curved Surfaces and Their Application as Gas Sensors,” Adv. Mater. 17 (2005) 2872–2877.
[39] K. Chen, S. V. Stoianov, J. Bangerter, and H. D. Robinson, “Restricted Meniscus Convective Self-Assembly,” J. Colloid Interf. Sci. 344 (2010) 315–320.
[40] M. H. Kim, S. H. lm, and O. O. Park, “Rapid Fabrication of Two- and Three Dimensional Colloidal Crystal Films via Confined Convective Assembly,” Adv. Funct. Mater. 15 (2005) 1329-1335.
[41] H. Q. Li, J. Low, K. S. Brown, and N. Q. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated with Self-Assembled Nanosphere Template,” IEEE Sene. J. 8 (2008) 880-884.
[42] M. Retsch, Z. C. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air/Water Interface,” Macromol. Chem. Phys. 210 (2009) 230-241.
[43] G. H. Jeong, J. K. Park, K. K. Lee, J. H. Jang, C. H. Lee, H. B. Kang, C. W. Yang, and S. J. Suh, “Fabrication of Low-Cost Mold and Nanoimprint Lithography Using Polystyrene Nanosphere,” Microelectron. Eng. 87 (2010) 51-55.
[44] P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved Deposition of Large Scale Ordered Nanosphere Monolayers via Liquid Surface Self-Assembly,” Mater. Sci. Eng. B-Adv. 165 (2009) 186-189.
[45] C. M. Zhou and D. Gall, “Surface Patterning by Nanosphere Lithography for Layer Growth with Ordered Pores,” Thin Solid Films 516 (2007) 433-437.
[46] G. X. Zhang, S. H. Sun, M. I. Ionescu, H. Liu, Y. Zhong, R. Y. Li, and X. L. Sun, “Controlled Growth/Patterning of Ni Nanohoneycombs on Various Desired Substrates,” Langmuir 26 (2010) 4346-4350.
[47] C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105 (2001) 5599-5611.
[48] K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes,” Nano Lett. 3 (2003) 13-18.
[49] Y. Wang, Y. Wang, J. Rybczynski, D. Z. Wang, K. Kempa, Z. F. Ren, W. Z. Li, and B. Kimball, “Periodicity and Alignment of Large-Scale Carbon Nanotubes Arrays,” Appl. Phys. Lett. 85 (2004) 4741-4743.
[50] T. Y. Tsai, T. H. Chen, N. H. Tai, S. C. Chang, H. C. Hsu, and T. J. Palathinkal, “The Fabrication of a Carbon Nanotube Array Using a Catalyst-Poisoning Layer in the Inverse Nanosphere Lithography Method,” Nanotechnology 20 (2009) 305303
[51] K. H. Park, S. Lee, K. H. Koh, R. L. KBK, and T. W. Milne, “Advanced Nanosphere Lithography for the Areal-Density Variation of Periodic Arrays of Vertically Aligned Carbon Nanofibers,” J. Appl. Phys. 97 (2005) 024311-024314.
[52] Y. F. Wang, J. H. Zhang, X. L. Chen, X. Li, Z. Q. Sun, K. Zhang, D. Y. Wang, and B. Yang, “Morphology-Controlled Fabrication of Polygonal ZnO Nanobowls Templated From Spherical Polymeric Nanowell Arrays,” J. Colloid. Interf. Sci. 322 (2008) 327-332.
[53] J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Morphology-Controlled 2D Ordered Microstructure Arrays by Surface Modification of Colloidal Template,” J. Nanosci. Nanotechno. 8 (2008) 4436-4440
[54] Y. Li, W. Cai, and G. Duan, “Ordered Micro/Nanostructured Arrays Based on the Monolayer Colloidal Crystals,” Chem. Mater. 20 (2008) 615-624.
[55] D. Byrne, A. Schilling, J. F. Scott, and J. M. Gregg, “Ordered Arrays of Lead Zirconium Titanate Nanorings,” Nanotechnology 19 (2008) 165608-1~5.
[56] F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien, “Ultrahigh-Density Arrays of Ferromagnetic Nanorings on Macroscopic Areas,” Adv. Mater. 16 (2004) 2155-2159.
[57] Y. Zhang, X. Wang, and Y. Wang, “Ordered Nanostructures Array Fabricated by Nanosphere Lithography,” J. Alloys Compd. 452 (2008) 473–477.
[58] A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks,” Small 1 (2005) 439-444.
[59] D. G. Choi, H. K. Yu, and S. M. Yang, “Colloidal Lithographic Nanopatterning via Reactive Ion Etching,” JACS 126 (2004) 7019-7025.
[60] Y. Li, E. J. Lee, W. Cai, K. Y. Kim, and S. O. Cho, “Unconventional Method for Morphology-Controlled Carbonaceous Nanoarrays Based on Electron irradiation of a Polystyrene Colloidal Monolayer,” ACSNano 2 (2008) 1108-1112.
[61] Y. Li, N. Koshizaki, Y. Shimizu, L. Li, S. Y. Gao, and T. Sasaki, “Unconventional Lithography for Hierarchial Micro/Nanostructure Arrays with Well-Aligned 1D Crystalline Nanostructures: Design and Creation Based on the Colloidal Monolayer,” ACS Appl. Mater. Inter. 1 (2009) 2580-2585.
[62] W. Cai, G. Duan, Y. Li, Z. Li, B. Cao, and Y. Luo, “Transferable Ordered Ni Hollow Sphere Arrays Induced by Electrodeposition on Colloidal Monolayer,” J. Phys. Chem. B. 110 (2006) 7184-7188.
[63] W. Cai, G. Duan, Y. Luo, Z. Li, and Y. Lei, “Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition,” J. Phys. Chem. B. 110 (2006) 15729-15733.
[64] M. E. Kiziroglou, X. Li, D. C. Gonzalez, and C. H. de Groot, “Orientation and Symmetry Control of Inverse Sphere Magnetic Nanoarrays by Guided Self-assembly,” J. Appl. Phys. 100 (2006) 113720-1~5.
[65] P. N. Bartlett, M. A. Ghanem, P. D. Groot, and A. Zhukov, “A Double Templated Electrodeposition Method for the Fabrication of Arrays of Metal Nanodots,” Electrochemistry Communications 6 (2004) 447–453.
[66] Y. W. Chung, I. C. Leu, J. H. Lee, J. H. Yen, and M. H. Hona, “Fabrication of Various Nickel Nanostructures by Manipulating the One-Step Electrodeposition Process,” J. Electrochem. Soc. 154 (2007) E77-E83.
[67] Z. Chen, P. Zhan, Z. Wang, J. Zhang, W. Zhang, N. Ming, C. Ting, and P. Sheng, “Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating,” Adv. Mater. 16 (2004) 417-422.
[68] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching,” Appl. Phys. Lett. 93 (2008) 133109-1~133109-3.
[69] W. Li, W. M. Zhao, and P. Sun, “Fabrication of Highly Ordered Metallic Arrays and Silicon Pillars with Controllable Size Using Nanosphere Lithography,” Physica. E 41 (2009) 1600-1603.
[70] W. Li, L. Xu, W. M. Zhao, P. Sun, X. F. Huang, and K. J. Chen, “Fabrication of Large-Scale Periodic Silicon Nanopillar Arrays for 2D Nanomold Using Modified Nanosphere Lithography,” Appl. Surf. Sci. 253 (2007) 9035-9038.
[71] H. B. Xu, N. Lu, D. P. Qi, L. G. Gao, J. Y. Hao, Y. D. Wang, and L. F. Chi, “Broadband Antireflective Si Nanopillar Arrays Produced by Nnanosphere Lithography,” Microelectron. Eng. 86 (2009) 850-852.
[72] X. Li and P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77 (2000) 2572-2574.
[73] E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10 (2010) 1082-1087.
[74] H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic Antireflective Si Nanopillar Arrays,” Small 4 (2008) 1972-1975.
[75] M. Steinert, J. Acker, S. Oswald, and W. Wetzig, “Study on the Mechanism of Silicon Etching in HNO3-Rich HF/HNO3 Mixtures,” J. Phys. Chem. C 111 (2007) 2133-2140.
[76] I. Zubel and M. Kramkowska, “Development of Etch Hillocks on Different Si(hkl) Planes in Silicon Anisotropic Etching,” Surf. Sci. 602 (2008) 1712–1721.
[77] M. R. Baklanov, I. A. Badmaeva, R. A. Donaton, L. L. Sveshnikova, W. Storm, and K. Maex, “Kinetics and Mechanism of the Etching of CoSi2 in HF-Based Solutions,” J. Electrochem. Soc. 143 (1996) 3245-3251.
[78] S. Y. Zhu, G. P. Ru, C. Detavernier, R. L. Van Meirhaeghe, E. Cardon, and B. Z. Li, “The Dependence of the Etching Property of CoSi2 Films in Diluted HF Solutions on the Formation Conditions,” Appl. Surf. Sci. 178 (2001) 44-49.
[79] B. Wang, S. J. Chua, and J. Teng, “Novel 2D Ordered Arrays of Nanostructures Fabricated Through Silica Masks Formed by Bilayer Colloidal Crystals as Templates,” IEEE (2005).
[80] S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and Nanobored Particle Arrays Sculpted Using Colloidal Lithography,” Adv. Funct. Mater. 16 (2006) 33-40.
[81] S. M. Yang, D. G. Choi, S. Kim, and E. Lee, “Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks,” J. Am. Chem. Soc. 127 (2005) 1636-1637.
[82] A. Sinitskii, S. Neumeier, J. Nelles, M. Fischler, and U. Simon, “Ordered Arrays of Silicon Pillars with Controlled Height and Aspect Ratio,” Nanotechnology 18 (2007) 305307-1~305307-6.
[83] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9 (2009) 279-282.
[84] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. Zhao, P. Sun, F. Song, J. Wan, and K. Chen, “Field Emission from a Periodic Amorphous Silicon Pillar Array Fabricated by Modified Nanosphere Lithography,” Nanotechnology 19 (2008) 135308-1~135308-5.
[85] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama,Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai,, “Analysis of Resistance Behavior in Ti and Ni-Salicided Polysilicon Films,” IEEE Trans. Electron Devices ED-41 (1994) 2305-2317.
[86] I. J. van Gurp and C. Langereis, “Cobalt Silicide Layer on Si Structure and Growth,” J. Appl. Phys. 46 (1975) 4301-4307.
[87] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 Formation through SiO2,” Thin Solid Films 386 (2001) 19-26.
[88] K. Maex, “Silicides for Integrated Circuits: TiSi2 and CoSi2,” Mater. Sc. Eng. R11 (1993) 53-153.
[89] R. T. Tung and F. Schrey, “Increased Uniformity and Thermal Stability of CoSi2 Thin Films by Ti Capping,” Appl. Phys. Lett. 67 (1995) 2164-2166.
[90] People, “Indirect band gap of coherently strained GexSil-x bulkalloys on <001> silicon substrates,” Phys. Rev. B32 (1985) 1405.
[91] D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Öztürk, “Stability of C54 Titanium Germanosilicide on a Silicon-Germanium Alloy Substrate,” J. Appl. Phys. 77 (1995) 5107-5114.
[92] R. People, “Indirect Band Gap of Coherently Strained GexSil-x Bulk Alloys on <001> Silicon Substrates, ” Phys. Rev. 33 (1986) 1451.
[93] Y. V. Ponomarev, “Gate-work Function Engineering Using Poly-(Si,Ge) for High-Performance 0.18 μm CMOS Technology,” IEDM Tech. Digest 33 (1997) 3.1-3.4.
[94] P. T. Goeller, B. I. Boyanov, D. E. Sayers, R. J. Nemanich, A. F. Myers, and E. B. Steel, “Germanium Segregation in the Co/SiGe/Si(001) Thin Film System,” J. Mater. Res. 14 (1999) 4372-4384.
[95] J. B. Lai and L. J. Chen, “Effects of Composition on the Formation Temperatures and Electrical Resistivities of C54 Titanium Germanosilicide in Ti–Si12xGex systems,” J. Appl Phys. 86 (1999) 1340–1345.
[96] R. A. Donaton and K. Maex, “Co Silicide Formation on SiGeC/Si and SiGe/Si Layers,” Appl. phys. lett. 70 (1997) 1266-1268.
[97] B. I. Boyanov, P. T. Goeller, D. E. Sayers, and R. J. Nemanich, “Film Thickness Effects in the Co–Si12xGex Solid Phase Reaction,” J. appl. phys. 84 (1998) 4285-4291.
[98] D. O. Shin, S. H. Ban, Y. S. Ahn, Y.S. Lee, N.E. Lee, and K.H. Shimb, “Structural and Electrical Characteristics of Epitaxial CoSi2 Grown on n-Si0.83Ge0.17yn-Si(001) by Reactive Chemical Vapor Deposition Using a Si Capping Layer,” Thin solid films 458 (2004) 269–273.
[99] Y. W. Ok, S. H. Kim, Y. J. Song, K. H. Shim, and T. Y. Seong, “Structural Properties of Nickel Silicided Si1-xGex(001) Layers,” Semicond. Sci. Technol. 19 (2004) 285–290.
[100] C. A. Chang, and J. S. Song, “Selectively Enhanced Silicide Formation by a Gold Interlayer: Probing the Dominant Diffusing Species and Reaction Mechanisms During Thin-Film Reactions,” Appl. phys. lett. 51 (1987) 572–574.
[101] S. L. Cheng and H.Y. Chen, “Effects of a Thin Au Interlayer on the Formation of Low-Resistivity CoSi2 on (001)Si Substrate,” Thin solid films 516 (2008) 8797–8803.
[102] J. Y. Yew, H. C. Tseng, L. J. Chen, K. Nakamura, and C. Y. Chang, “Formation of Self-Aligned CoSi2 on Selective Epitaxial Growth Silicon Layer on (001)Si Inside 0.1–0.6 mm Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett. 69 (1996) 3692-3694.
[103] W. W. Wu, T. F. Chiang, S. L. Cheng, S. W. Lee, and L. J. Chen, “Enhanced Growth of CoSi2 on Epitaxial Si0.7Ge0.3 with a Sacrificial Amorphous Si Interlayer,” Appl. phys. lett. 81 (2002) 820-822.
[104] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique”, Langmuir 20 (2004) 10998-11004.
[105] C. D. Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura, and K. Nagayama, “Effect of Growth Conditions on the Structure of Two-Dimensional Latex Crystals: Experiment”, Colloid. Polym. Sci. 277 (1999) 914-930.
[106] H. Cong and W. Cao, “Colloidal Crystallization Induced by Capillary Force”, Langmuir 19 (2003) 8177-8181.
[107] P. T. Goeller, B. I. Boyanov, D. E. Sayers, and R. J. Nemanich, “Structure and Stability of Cobalt-Silicon-Germanium Thin Films,” Nucl. Instrum. Methoods B 133 (1997) 84-89.
[108] P. T. Goeller, B. I. Boyanov, D. E. Sayers, and R. J. Nemanich, “Germanium sSegregation in the Co/SiGe/Si(001) Thin Film System,” J. Mater. Res. 14 (1999) 4372–4384.
[109] S. L. Cheng, S. L. Wong, S. W. Lu, and H. Chen, “Large-area Co-silicide Nanodot Arrays Produced by Colloidal Nanosphere Lithography and Thermal Annealing,” Ultramicroscopy 108 (2008) 1200– 1204.
[110] S. L. Cheng, S. W. Lu, S. L. Wong, C. C. Chang, and H. Chen, “Fabrication of 2D Ordered Arrays of Cobalt Silicide Nanodots on (0 0 1)Si Substrates,” J. Cryst. Growth 300 (2007) 473–477.
[111] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[112] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 58 (1998) R16024-R16026.
[113] H. F. Yan , Y. J. Xing , Q. L. Hang , D. P. Yu , Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid–Liquid–Solid Mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[114] W. T. Lai and P. W. Li, “Growth Kinetics and Related Physical/Electrical Properties of Ge Quantum Dots Formed by Thermal Oxidation of Si1-xGex-on-Insulator,” Nanotechnology 18 (2007) 145402.
[115] S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, and H. Chen, “Fabrication of Periodic Nickel Silicide Nanodot Arrays Using Nanosphere Lithography,” Thin Solid Films 494 (2006) 307–310.
[116] H. E. Jeong, S. H. Lee, J. K. Kim, and K. Y. Suh, “Nanoengineered Multiscale Hierarchical Structures with Tailored,” Langmuir 22 (2006) 1640-1645.
[117] C. W. Yang, H. E. Feng, and P. F. HAO, “The Apparent Contact Angle of Water Droplet on the Micro-Structured Hydrophobic Surface,” Sci. China Chem. 53 (2010) 912-916.
[118] A. Winkleman, G. Gotesman, A. Yoffe, and R. Naaman, “Immobilizing a Drop of Water: Fabricating Highly Hydrophobic Surfaces that Pin Water Droplets,” Nano Lett. 8 (2008) 1241-1245.
[119] J. Bae, H. Kim, X. M. Zhang, C. H. Dang, Y. Zhang, Y. J. Choi, A. Nurmikko, and Z. L. Wang, “Si Nanowire Metal-Insulator-Semiconductor Photodetectors as Efficient Light Harvesters,” Nanotechnology 21 (2010) 095502-1~095502-5.
[120] J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, “Integrated ZnO Nanotips on GaN Light Emitting Diodes for Enhanced Emission Efficiency,” Appl. Phys. Lett. 90 (2007) 203515-1~ 203515-3.
[121] Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. Hea, “Surface Profile-Controlled Close-Packed Si Nanorod Arrays for Self-Cleaning Antireflection Coatings,” J. Appl. Phys. 106 (2009) 114310-1-114310-4.
[122] J. Han, S. Lu, Q. Li, X. Li, and J. Wang, “Anisotropic Wet etching Silicon Tips of Small Opening Angle in KOH Solution with the Additions of I2/KI,” Sensor. Actuat. A 152 (2009) 75–79.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明