博碩士論文 973204061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.22.79.125
姓名 謝尚豪(Shang-hao Hsieh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Indolicidin 及其類似物與微脂粒交互作用之焓測 量
(Interaction of Indolicidin and its analogues withModel Membrane-enthalpy measurement )
相關論文
★ 老鼠免疫球蛋白IgG2a之位向性固定法—Fc區域的親和性配體設計★ 量子點表面改質與動物細胞標定
★ 以螢光光譜觀測蛋白質吸附於疏水表面後之構型變化與吸附位向★ 利用雙功能吸附基材進行蛋白復性-蛋白吸附狀態對復性的影響
★ 界面聚合之奈米過濾膜的抗氯性研究★ 以螢光光譜探討Indolicidin及其類似物與微脂粒之交互作用
★ 負電性奈米過濾膜之排鹽特性★ 金奈米粒子親水化及與DNA一對一鍵結之探討
★ 以雙重電性表面改質方式製作抗生物吸附之超過濾與奈米過濾膜★ 以表面修飾之材料控制間葉幹細胞貼附及對其往軟骨分化之影響
★ 金奈米粒子與DNA一對一鍵結及其在檢測單一核苷酸變異的應用★ 以三聚氰氯為單體的抗氯型奈米過濾膜
★ 鹼性胜肽抗生素indolicidin及其類似物之溶血作用機制探討★ 蛋白質特定方向固定化-以α-amylase為例
★ Indolicidin及其類似物與微脂粒交互作用之熱力學研究★ 位向性固定化葡萄糖氧化酶之新方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Indolicidin為一有潛力的抗生藥物,其具有相當廣泛的抗生活性,對抗細菌、真菌、病毒皆有不錯的能力,且是一段具有不錯經濟效益的短鏈胜肽。然而,Indolicidin對人類紅血球的溶血活性卻限制其進一步的發展。雖然,擁有低溶血血性的IL之類似物(ILK7、ILF89、ILK7F89)已經被設計,但它們的行為機制仍然不是非常清楚。本研究主要是探討其生物活性與膜擾亂之間的關係。我們藉由螢光異位向性實驗研究膜擾亂的情形,並以恆溫滴定微卡計研究胜肽與膜之間的熱變化。而我們使用兩種仿生物細胞膜的微脂粒,仿細菌細胞膜(POPG/POPC=1, PG/PC-SUVs)與仿人類紅血球細胞膜(純 POPC, PC-SUVs)。而我們進一步探討IL及其類似物對抗革蘭氏陽性菌(staphylococcus epidermidis)的活性,結果發現IL的類似物皆擁有較IL更強或相當的抗菌活性。另一方面,在POPC微脂粒的作用中,胜肽對膜的擾亂與膜擾亂焓和其溶血活性沒有很強烈的關係,所以對於溶血活性主要仍是與其胜肽吸附量有關。因此,對於抗菌活性胜膜的擾亂程度確實是一很重要的影響因素。
摘要(英) Indolicidin (IL) is a cationic antibacterial peptide with broad-spectrum against many pathogens; therefore, it is a potential peptide antibiotic. However, the hemolytic activity of IL limits its clinical application. Although the IL-analogues (ILK7, ILF89 and ILK7F89) with lower hemolysis have been designed, the action mechanisms of them were still under debating. In this study, we tried to examine the relationships between bioactivity and membrane perturbation. The membrane perturbation was investigated through the help of fluorescence anisotropic measurement. The membrane association enthalpy and membrane perturbation enthalpy were examined by isothermal titration calorimeter (ITC) and peptide-membrane adsorption isotherm. Two types of small unilamellar vesicles (SUVs) were used to mimic the bacterial-like membrane (POPG/POPC=1) and erythrocyte-like membrane (pure POPC). The antibacterial activity of IL and its analogues against Gram-positive bacteria (staphylococcus epidermidis) were also examined. The results revealed that IL-analogues with enhancing or similar antibacterial activity than that of IL peptide.
The interaction of peptide and PG/PC-SUVs revealed that the peptide with high antibacterial activity owns strongly membrane perturbation and highly membrane perturbation enthalpy. On the contrary, as peptide and PC-SUVs interaction, the membrane perturbation of peptide action and membrane perturbation enthalpy are not strongly correlated with its hemolytic activity. Particularly, the hemolysis is related to the amounts of peptide adsorption. Consequently, the membrane perturbation suffered by peptide is an important implication on antibacterial activity.
關鍵字(中) ★ 抗菌胜肽
★ 膜擾亂
★ 恆溫滴定微卡計
關鍵字(英) ★ Indolicidin
★ Fluorescence Anisotropy
★ Isothermal titration calorimeter
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
二. 文獻回顧 3
2-1 鹼性抗生胜肽 3
2-1-1 鹼性抗生胜肽的抗生機制 4
2-2 鹼性抗菌胜肽Indolicidin 7
2-2-1微脂粒 7
2-2-2 Indolicidin 抗菌活性及機制 9
2-2-3 Indolicidin 的溶血活性及機制 11
2-3 Indolicidin的類似物 11
2-4 胜肽在細胞膜上之行為與對膜之影響的探討 13
2-4-1 利用圓二色光譜探討胜肽與膜作用之結構變化 13
2-4-2 利用螢光光譜探討胜肽在膜上之分散程度 15
2-4-3 用螢光光譜探討胜肽在膜上之插入深度 15
2-4-4 探討抗生胜肽對細胞膜的擾亂程度 15
2-5恆溫滴定微卡計(Isothermal titration calorimeter)簡介與原理 17
2-4-1胜肽與微脂粒交互作用之焓值測量 18
第三章 實驗藥品、設備與方法 20
3-1 實驗藥品 20
3-2 實驗設備 21
3-3 微脂粒之製備 22
3-4 抗菌活性 23
3-4-1 單一菌落的培養 23
3-4-2 菌液預培養 24
3-4-3抗菌活性 24
3-5恆溫滴定微卡計實驗(MicroCal VP-ITC) 24
3-6 IL及其類似物吸附曲線最適化-得其吸附量 27
3-7含有 DPH之POPC 微脂粒的製備 29
3-8 Indolicidin 及其類似物螢光異位相性 30
第四章結果與討論 31
4-1 Indolicidin 及其類似物的抗生活性 31
4-1-1抗S. epidermidis活性 32
4-1-2 Indolicidin及其類似物抗生活性討論 33
4-2 Indolicidin 及其類似物POPG/POPC微脂粒交互作用 36
4-2-1 以螢光異位向法探討IL及其類似物對POPG/POPC膜擾亂程度 36
4-2-2 IL及其類似物對POPG/POPC微脂粒交互作用之焓測量 38
4-2-2-1 IL及其類似物對POPG/POPC微脂粒之吸附量 40
4-2-2-2 IL及其類似物對POPG/POPC微脂粒之累積熱 41
4-3 Indolicidin 及其類似物POPC微脂粒交互作用 45
4-3-1 以螢光異位向法探討IL及其類似物對POPC膜擾亂程度 45
4-3-2 IL及其類似物對POPC微脂粒交互作用之焓測量 47
4-3-2-1 IL及其類似物對POPC微脂粒之吸附量 49
4-3-2-2 IL及其類似物對POPC微脂粒之累積熱 50
第五章 結果與討論 53
第六章 參考文獻 54
第七章 附錄 57
參考文獻 1. Diamond, R.E.W.H.a.G., The role of cationic antimicrobial peptides in innate host defences. TRENDS IN MICROBIOLOGY, 2000. 8(9): p. 402-410.
2. Yechiel Shai , Z.O., From “carpet” mechanism to de-novo designed diastereomeric cellselective antimicrobial peptidesPeptides, 2001. 22(2001): p. 1629–1641.
3. Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by K-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta. 1462(1999): p. 55-70.
4. Revital Halevy , A.R., Sofiya Kolusheva , Robert E.W. Hancock , Raz Jelinek, Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides, 2003. 24(2003): p. 1753–1761.
5. Rozek, A., Friedrich, C. L., and Hancock, R. E. W., Structure of the Bovine Antimicrobial Peptide Indolicidin Bound to Dodecylphosphocholine and Sodium Dodecyl Sulfate Micelles. Biochemistry, 2000. 39(51): p. 15765-15774.
6. Schluesener HJ, R.S., Melms A, Jung S., Leukocytic antimicrobial peptides kill autoimmune T cells. Journal of neuroimmunology, 1993. 47.
7. Giacometti, A., Cirioni, O., Greganti, G. et al, In Vitro Activities of Membrane-Active Peptides against Gram-Positive and Gram-Negative Aerobic Bacteria. Antimicrob. Agents Chemother, 1998. 42(12): p. 3320-3324.
8. Friedrich, C.L., Moyles, D., Beveridge, T. J. et al, Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive Bacteria,” Antimicrob. Agents Chemother, 2000. 44(8): p. 2086-2092.
9. Falla, T.J., and Hancock, R. E., Improved activity of a synthetic indolicidin analog Antimicrob. Agents Chemother, 1997. 41(4): p. 771-775.
10. Subbalakshmi, C., Krishnakumari, V., Sitaram, N. et al, Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes. J. Biosci, 1998. 23: p. 9-13.
11. Lee, D.G., Kim, H. K., Kim, S. A. et al, Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochemical and Biophysical Research Communications, 2003. 305(2): p. 305-310.
12. Stephen B. Aley, M.Z., Michel Hetsko, Michel E. Selsted, and Frances D. Gillin,, Killing of Giardia lamblia by Cryptdins and Cationic Neutrophil Peptides. Infection and Immunity, 1994 62(12): p. 5397-5403.
13. Robinson, W.E., McDougall, B., Tran, D. et al., Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol, 1998. 63( 1): p. 94-100.
14. Vanesa, C.A.M., and Viviana, C., Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. International journal of antimicrobial agents, 2004. 23( 4): p. 382-389.
15. Falla, T.J., Karunaratne, D. N., and Hancock, R. E. W, Mode of Action of the Antimicrobial Peptide Indolicidin. J. Biol. Chem, 1996. 271(32): p. 19298-19303.
16. Manhong Wu, E.M., Roland Benz, Robert E. W. Hancock, Mechanism of Interaction of Different Classes of Cationic Antimicrobial Peptides with Planar Bilayers and with the Cytoplasmic Membrane of Escherichia coli. Biochemistry, 1999. 38(22): p. 7235-7242.
17. Yang Sung-Tae, S.S.Y., K.-S. H. et al., Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. International journal of antimicrobial agents, 2006. 27(4): p. 325-330.
18. Zhang, L., Rozek, A., and Hancock, R. E. W., Interaction of Cationic Antimicrobial Peptides with Model Membranes. J. Biol. Chem, 2001. 276(38): p. 35714-35722.
19. Yau, W.-M., Wimley, W. C., Gawrisch, K. et al., The Preference of Tryptophan for Membrane Interfaces. Biochemistry, 1998. 37(42): p. 14713-14718.
20. Schibli, D.J., Epand, R. F., Vogel, H. J. et al., Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochemistry and Cell Biology, 2002. 80: p. 667-677.
21. Zhao, H., Mattila, J.-P., Holopainen, J. M. et al., Comparison of the Membrane Association of Two Antimicrobial Peptides, Magainin 2 and Indolicidin. Biophysical Journal, 2001. 81(5): p. 2979-2991.
22. Chilukuri Subbalakshmi, N.S., Mechanism of antimicrobial action of indolicidin. FEMS Microbiology Letters, 1998. 160(1): p. 91-96.
23. Hsu, C.-H., Chen, C., Jou, M.-L. et al., Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucl. Acids Res, 2005. 33(13): p. 4053-4064.
24. Shaw, J.E., Alattia, J.-R., Verity, J. E. et al., Mechanisms of antimicrobial peptide action: Studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. Journal of Structural Biology, 2006. 154(1): p. 42-58.
25. Hsu, J.C.Y., and Yip, C. M., Molecular Dynamics Simulations of Indolicidin Association with Model Lipid Bilayers. Biophys. J, 2007 92(12): p. 100-102.
26. Ahmad, I., Perkins, W. R., Lupan, D. M. et al., Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochimica et Biophysica Acta (BBA)- Biomembranes, 1995. 1237(2): p. 109-114.
27. Subbalakshmi, C., Krishnakumari, V., Nagaraj, R. et al., Requirements forantibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Letters, 1996. 395(1): p. 48-52.
28. Subbalakshmi, C., Bikshapathy, E., Sitaram, N. et al., Antibacterial and Hemolytic Activities of Single Tryptophan Analogs of Indolicidin. Biochemical and Biophysical Research Communications, 2000. 274(3): p. 714-716.
29. Papo, N., and Shai, Y., Exploring Peptide Membrane Interaction Using Surface Plasmon Resonance: Differentiation between Pore Formation versus Membrane Disruption by Lytic Peptides. Biochemistry, 2003. 42(2): p. 458-466.
30. Mechler, A., Praporski, S., Atmuri, K. et al., Specific and Selective Peptide-Membrane Interactions Revealed Using Quartz Crystal Microbalance. Biophysical Journal, 2007. 93(11): p. 3907-3916.
31. Adam A. Strömstedt , L.R., Artur Schmidtchen , Martin Malmsten Interaction between amphiphilic peptides and phospholipid membranes. Current Opinion in Colloid & Interface Science, 2010(12).
32. Ana Lu´ cia C.F. Souto, E.F.P., Clo´ vis R. Nakaie, Shirley Schreier,, Fluorescence and circular dichroism study of the interaction between indolicidin, a tryptophan-rich antimicrobial peptide, and model membranes. Progr Colloid Polym Sci, 2004. 128.
33. Royer, C.A., Probing Protein Folding and Conformational Transitions with Fluorescence. Chemical Reviews, 2006. 106(5): p. 1769-1784.
34. Caputo, G.A., and London, E., Using a Novel Dual Fluorescence Quenching Assay for Measurement of Tryptophan Depth within Lipid Bilayers To Determine Hydrophobic α-Helix Locations within Membranes. Biochemistry, 2003. 42(11): p. 3265-3274.
35. L. Miccoli. Szczepaniak, D., Savonni~re, .Muller, C. Carr6, and a.M. Donner, Interaction of a Phosphatidylcholine Derivative of 1,6- Diphenyl-l,3,5-hexatriene (DPH) with Intact Living Cells: Steady-State Fluorescence Polarization and Phase Fluorometry Studies Journal of Fluorescence, 1993. 3(4).
36. M. Mun˜oz , N.R.I.H.V.G.C.M.M.A.B., Fluorescence analysis of the interaction of two peptide sequences of hepatitis GB virus C with liposomes. Talanta, 2003. 60.
37. Seelig, J., Titration calorimetry of lipid–peptide interactions. Biochimica et Biophysica Acta, 1997. 1331.
指導教授 阮若屈(R.C. Ruaan) 審核日期 2010-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明