博碩士論文 953204032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:3.138.105.124
姓名 彭信家(Hsin-Chia Peng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 超薄陽極氧化鋁模板與規則有序鎳金屬奈米點陣列之製備
(Fabriction of ultra-thin AAO templte and well-ordered Ni nanodot arrays)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究首度提出新穎且有效的兩次陽極氧化製程在矽晶基材上製備孔洞規則有序排列之超薄陽極氧化鋁模板,其孔徑可調控在70-90 nm之間,且深寬比可控制在4:1以下,此一超薄陽極氧化鋁模板相當適合製作許多可調控尺寸之奈米結構,而不需要複雜的微影技術。
本研究也進一步利用所製備具有孔洞規則排列之超薄陽極氧化鋁充當模板,搭配物理氣相沉積技術鍍製出鎳金屬奈米點陣列。經由SEM、AFM與TEM等分析儀器鑑定得知所製備點陣大小十分均一,點陣大小平均為70-80 nm,且排列之週期與所使用之氧化鋁奈米模板相同。藉由TEM及選區電子繞射(SAED)圖形分析鑑定其晶體結構,經分析其繞射環後,可確定所鍍製之奈米點陣為具多晶結構之純鎳金屬點陣。
除此之外,本實驗也利用上述製備出之規則有序之鎳金屬奈米點陣列作為遮罩,搭配金屬催化蝕刻法成功製備出大量尺寸均一之奈米線,並以SEM、TEM等分析儀器確定此奈米線之尺寸約在80-90 nm之間,並經由SAED鑑定奈米線之晶體結構發現,所製備之奈米線均為矽單晶奈米線,且其軸向皆沿[001]方向與所使用之(001)Si單晶晶片之晶向相同。
摘要(英) In the study, we have proposed a novel and cost-effective technique to fabricate ultra-thin anodic aluminum oxide (AAO) templates with ordered nanopore structures on Si substrates. The pore diameters of the ultra-thin AAO templates can be precisely controlled in the range of 70 to 90 nm, and their aspect ratio can be made 4:1 or less. The ultra-thin AAO membrane can serve as the template for the fabrication of various OD nanostructures without complex lithography.
The present study has demonstrated that large-area well-ordered Ni metal nanodot arrays were successfully fabricated on (001) Si substrates using ultra-thin AAO as the shadow masks for the deposition of Ni thin films. The Ni nanodots produced have the shape of semi-sphere and their average diameter was about 7x nm, corresponding to the pore size of the ultra-thin AAO template. Based on the TEM and selected-area electron diffraction (SAED) analysis, it is found that all the Ni nanodots produced were polycrystalline and these Ni nanodots possess a FCC structure.
In addition, the periodic Ni nanodots array can be served as the hard masks for the fabrication of Si nanowires (SiNWs). This study has also demonstrated that high density SiNWs were successfully produced on (001) Si substrates by using the Ni nanodot masks in conjunction with the Au-assisted selective etching process. TEM and SAED analysis indicated that all the SiNWs produced were single crystalline and their axial orientations were along [001] direction.
關鍵字(中) ★ 模板
★ 規則有序
★ 奈米點
★ 陣列
關鍵字(英) ★ array
★ nanodot
★ well-ordered
★ template
論文目次 第一章 緒論 1
1-1前言 1
1-2 奈米材料 2
1-3 多孔性陽極氧化鋁模板 3
1-3-1 陽極氧化鋁成長機制 4
1-3-2陽極氧化電解液 6
1-3-3模板法製備奈米結構技術 7
1-4 超薄陽極氧化鋁模板(Ultra-thin alumina masks,UTAMs) 8
1-4-1超薄陽極氧化鋁製作技術 9
1-4-2陽極氧化鋁孔洞規則有序化製程 12
1-5 研究動機 14
第二章 實驗步驟 15
2-1 超薄陽極氧化鋁模板之製備 15
2-1-1 鋁金屬片的前處理 15
2-1-2 新穎兩次陽極氧化製程 15
2-1-3 超薄氧化鋁模板之製備 16
2-2 鎳金屬奈米點陣之製備 17
2-2-1 金屬薄膜蒸鍍 17
2-2-2 氧化鋁模板之移除 18
2-3 實驗製程設備 18
2-3-1 蒸鍍系統(Evaporation system) 18
2-3-2 陽極處理反應槽 18
2-3-3 反應性離子蝕刻機 18
2-4 實驗分析儀器 19
2-4-1 掃描式電子顯微鏡(SEM) 19
2-4-2穿透式電子顯微鏡(TEM)與選區電子繞射(SAED) 19
2-4-3 原子力顯微鏡(AFM) 20
2-4-4 紫外光-可見光光譜儀(UV-VIS Spectrophotometer) 20
第三章 結果與討論 21
3-1 超薄規則有序陽極氧化鋁模板之製備 21
3-1-1 陽極氧化製程溫度 21
3-1-2 一次與兩次陽極氧化製程 23
3-1-3 新穎兩次陽極氧化製程 24
3-1-4 不同製程超薄陽極氧化鋁模板之比較 26
3-1-5超薄陽極氧化鋁模板之轉附 27
3-1-6 可見光-紫外光光譜儀之量測 28
3-2 規則有序金屬奈米點陣列 29
3-2-1 鎳金屬奈米點陣列之製備 29
3-2-2 鎳金屬奈米點陣列之形貌與結構分析 29
3-3 模板法製備單晶矽奈米線 31
第四章 結論 33
參考文獻 34
表目錄 42
圖目錄 44
參考文獻 [1] K. V. Klitzing, G. Dorda and M. Pepper, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance” Phys. Rev. Lett. 45 (1980) 494-497.
[2] Z. Yao, H. W. C. Postma, L. Balents and C. Dekker, “Carbon nanotube intramolecular junctions” Nature 402 (1999) 273-276.
[3] W. Barthlott and C. Neinhuis, “Purity of the sacred lotus,or escape from contamination in biological surfaces” Planta 202 (1997) 1-8.
[4] K. Autumn and Y. A. Liang, “Adhesive force of a single gecko foot-hair” Nature 405 (2000) 681-685.
[5] M. Zheng, G. Li, X. Zhang, S. Huang, Y. Lei and L. Zhang, “Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrane” Chem. Mater. 13 (2001) 3859-3861.
[6] X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays” Chem. Mater. 13 (2001) 2511-2515.
[7] S. Miserendino, J. Yoo, A. Cassell and Y. C. Tai, “Electrochemical characterization of parylene-embedded carbon nanotube nanoelectrode arrays” Nanotechnology 17 (2006) S23-S28.
[8] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile and C. P. Tripp, “Template-assisted fabrication of dense aligned arrays of titania nanotubes with well-controlled dimensions on substrates” Adv. Mater. 16 (2004) 2052-2057.
[9] K. Wegner, P. Piseri, H. V. Tafreshi and P. Milani, “Cluster beam deposition: a tool for nanoscale science and technology” J. Phys. D: Appl. Phys. 39 (2006) R439-R459.
[10] J. Fang, X. Ma, H. Cai, X. Song and B. Ding, “Nanoparticle-aggregated 3D monocrystalline gold dendritic nanostructures” Nanotechnology 17 (2006) 5841-5845.
[11] J. Chen and L. M. Wu, “Syntheses and characterizations of Bismuth nanofilms and nanorhombuses by thestructure-controlling solventless method” Inor. Chem. 46 (2007) 586-591.
[12] K. L. Hobbs, P. R. Larson, G. D. Lian, J. C. Keay and M. B. Johnson, “Fabrication of nanoring arrays by sputter redeposition using porous alumina templates” Nano Letter 4 (2004) 167-171.
[13] T. Y. Zhang, W. Zhao and J. C. Cao, “Optical response in a quantum dot superlattice nanoring under a lateral electric field” Phys. Rev. B. 72 (2005) 165310-1-6.
[14] F. Sun, J. C. Yu and X. Wang, “Construction of size-controllable hierarchical nanoporous TiO2 ring arrays and their modifications” Chem. Mater. 18 (2006) 3774-3779.
[15] V. I. Klimov, A. A. Mikhailovsky, S. Xu, “Optical gain and stimulated emission in nanocrystal quantum dots” Science 290 (2000) 314-317.
[16] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han and Y. H. Lee, “Fully sealed, high-brightness carbon-nanotube field-emission display” Appl. Phys. Lett. 15 (1999) 3129-3131.
[17] E. Comini, G. Faglia and G. Sberveglieri, “Stable and highly sensitive gas sensors based on semiconductingoxide nanobelts” Appl. Phys. Lett. 81 (2002) 1869-1871
[18] Y. R. Ma, C. M. Lin and C. L. Yeh, “Synthesis and characterization of one-dimensional WO2 nanorods” J. Vac. Sci. Techno., B 23 (2005) 2141-2145.
[19] I. Dökme, S. E. Altındal and M. Gökçen, “Frequency and gate voltage effects on the dielectric properties of Au/SiO2/n-Si structures” Microelectronic Engineering. 85 (2008) 1910–1914
[20] M. N. Baibich, J. M. Broto, A. Fert and F. Nguyen, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices” Phys. Rev. Lett. 61 (1998) 2472–2475
[21] M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin and H. Yoneyam, “Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for Lithium batteries” J. Electro. Soc. 144 (1997) 1923-1927.
[22] D. Almawlawi, N. Coombs and M. Moskovits, “Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size” J. Appl. Phys. 70 (1991) 4421-4425.
[23] A. Birner, U. Grüning, S. Ottow, A. Schneider and F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range” Phys. Stat. Sol. (a). 165 (1998) 111-117.
[24] S. B. Tang, A. Tang, S. B. Tang and M. O. Lai, “Electrochemical studies of low-temperature processed nano-crystalline LiMn2O4 thin film cathode at 55 ◦C” J. Power Sources. 164 (2007) 372-378.
[25] H. Li, T. Xu, C. Wang, J. Chen, H. Zhou and H. Liu, “Annealing effect on the structure, mechanical and tribological properties of hydrogenated diamond-like carbon films” Thin Solid Films 515 (2006) 2153-2160.
[26] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a 2-step replication of honeycomb structure of anodic alumina” Science 268 (1995) 5216-5219.
[27] N. Tsuya, T. Tokushima, M. Shiraki, Y. Wakui, Y. Saito, H. Nakamura, S Hayano, A. Furugori, and M. Tanaka, “Alumite disk using anodic oxidation” IEEE Trans. Magn. 22 (1986) 1140.
[28] K. L. Hobbs, P. R. Larson, G. D. Lian, J. C. Keay, and M. B. Johnson, “Fabrication of nanoring arrays by sputter redeposition using porous alumina templates” Nano Lett. 4 (2004) 167.
[29] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina” Science 268 (1995) 1466-1468.
[30] G. Patermarakis and K. Moussoutzanis, “Electrochemical kinetic study on the growth of porous anodic film on aluminium” Electrochim. acta. 40 (1995) 699-708.
[31] H. Pan, J. Lin, Y. Feng and H. Gao, “Electrical-bridge model on the self-organized growth of nanopores in anodized aluminum oxide” IEEE Transactions on Nanotechnology 3 (2004) 462-467.
[32] D. A. Vermilyea, “Stresses in anodic films” J. Electrochem. Soc. 110 (1963) 345.
[33] A. J. Brock and G. C. Wood, “Studies on the structure of anodic oxide films on aluminim” Electrochim. Acta 12 (1967) 395.
[34] T. P. Hoar, D. C. Mears, and G. P. Rothwell, “The relationships between anodic passivity, brightening and pitting” Corros. Sci. 5 (1965) 279.
[35] F. Y. Li, L. Zhang and R. M. Metzger, “On the growth of highly ordered pores inanodized aluminum oxide” Chem. Mater. 10 (1998) 2470.
[36] J. A. Treverton, and N .C. Davies, “XPS studies of dc and ac anodic films on aluminum formed in surphuric acid” Electrochim. Acta 25 (1980) 1571.
[37] S. Tajima, “Luminescence, breakdown and colouring of anodic oxide film on aluminum” Electrochim. Acta 22 (1977) 995.
[38] K. Shimizu, G. E. Thompson, and G. C. Wood, “Preparation of regularly structured porous metal membranes with two different hole diameters at the two sides” Electrochim. Acta 27 (1982) 245.
[39] L. Zhang, H. S. Cho and F. Li, “Cellular growth of highly ordered porous anodic films on aluminum” Thin Solid Films 92 (1982) 231.
[40] F. Keller, M. S. Hunter and D. L. Robinson, “Structural Features of Oxide Coatings on Aluminium” J. Electrochem. Soc., 100, (1953) 411-419.
[41] H. Ghik, J. Liang and S. G. Cloutier, “Periodic array of uniform ZnO nanorods by second-order self-assembly” Appl. Phys. Lett. 84 (2004) 3376-3378
[42] Y. G. Guo, L. J. Wan and Zhu CF, “Ordered Ni-Cu nanowire array with enhanced coercivity” Chem. Mater. 15 (2003) 664-447.
[43] G.. P. Sklar, K. Paramguru and M. Misra, “Pulsed electrodeposition into AAO templates for CVD growth of carbon nanotube arrays” Nanotechnology 16 (2005) 1265-1271.
[44] F. H. Wang, Y. F. Tu and J. P. Sang “Aspect ratio-dependent optical properties of Ni-P/AAO nano-array composite structure” J. Mater. Sci. 45 (2010) 16-22.
[45] Y. F. Liu, F. H. Wang and D. L. Guo, “Effects of heat treatment on optical absorption properties of Ni–P/AAO nano-array composite structure” Appl. Phys. A 97 (2009) 677–681.
[46] J. J. Liu, F. Wang, J. Y. Zhai “Controllable growth and magnetic characterization of electrodeposited nanocrystalline Ni-P alloy nanotube and nanowire arrays inside AAO template” J. Electro. Chem. 642 (2010) 103-108.
[47] W. Wang, N. Li and X. T. Li, “Synthesis of metallic nanotube arrays in porous anodic aluminum oxide template through electroless deposition” Mater. Res. Bull. 41 (2006) 1417-1423.
[48] N. Tasaltin, S. Ozturk and N. Kilinc “Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte” Nanoscale Res. Lett. 5 (2010) 1137-1143.
[49] N. Esman and J. P. Lellouche “Fabrication of functional polypyrrole (PolyPyr)-nanotubes using anodized aluminium oxide (AAO) template membranes. Compromising between effectiveness and mildness of template dissolution conditions for a safe release of PolyPyr-nanotubes” Polymer Chemistry 1 (2010) 158-160.
[50] H. Gao , C. Mu and F. Wang, “Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template” J. Appl. Phys. 93 (2003) 5602-5605
[51] B. B. Lakshmi, P. K. Dorhout, and C. R. Martin, “Sol-gel template synthesis of semiconductor nanostructures” Chem. Mater. 9 (1997) 857.
[52] Z. Miao, D. S. Xu and J. H. Ouyang, “Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires” Nano Letters 2 (2002) 717-720.
[53] G. Gorokh, A. Mozalev and D. Solovei “Anodic formation of low-aspect-ratio porous alumina films for metal-oxide sensor application” Electrochim. Acta 52 (2006) 1771–1780
[54] D. Crousea and Y. H. Lo, “Self-ordered pore structure of anodized aluminum on silicon and pattern transfer” Appl. Phys. Lett. 76 (2000) 49-51.
[55] W. H. Kim, S. J. Park and J. Y. Son ,“Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition” Nanotechnology 19 (2008) 045302.
[56] Y. Lei and W. K. Chim, “Shape and Size Control of Regularly Arrayed Nanodots Fabricated Using Ultrathin Alumina Masks” Chem. Mater. 17 (2005) 580-584.
[57] M. Kokonou, C. Rebholz, K. P. Giannakopoulos and C.C. Doumanidis, “Low aspect-ratio porous alumina templates” Microelectronic Engineering 85 (2008) 1186–1188.
[58] G. Y. Zhao, C. L. Xu, D. J. Guo and H. Li, “Template preparation of Pt nanowire array electrode on Ti/Si substrate for methanol electro-oxidation” Appl. Surf. Sci. 253 (2007) 3242–3246.
[59] J. Xu and X. Huang “Pulsed electrodeposition of monocrystalline Ni nanowire array by intermittent symmetric square wave” Mater. Lett. 62 (2008) 1491-1494
[60] H. S. Seo, Y. G. Jung and S. W. Jee, “Compositionally bilayered feature of interfacial voids in a porous anodic alumina template directly formed on Si” Scripta Materialia 57 (2007) 968–971.
[61] M. Kokonou, A. G. Nassiopoulou, K. P. Giannakopoulos and A. Travlos, “Growth and characterization of high density stoichiometric SiO2 dot arrays on Si through an anodic porous alumina Template” Nanotechnology 17 (2006) 2146–2151
[62] P. L.Chen and C. T. Kuo, “Self-organized titanium oxide nanodot arrays by electrochemical anodization” Appl. Phys. Lett. 82 (2003) 2796-2798.
[63] H. Masuda and M. Satoh. “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask.” Jpn. J. Appl. Phys. 35(1996)L126–9
[64] H. Masuda, K. Yasui and K. Nishio. “Fabrication of ordered arrays of multiple nanodots using anodic porousalumina as an evaporation mask.” Adv. Mater. 12 (2000) 1031-1033
[65] X. Y. Mei, M. Blumin, M. Sun M, D Kim, Z. H. Wu and H. E. Ruda“Highly ordered GaAs/AlGaAs quantum-dot arrays on GaAs (001) substrates grown by molecular-beam epitaxy using nanochannel alumina masks.” Appl. Phys. Lett. 82(2003)967–969.
[66] N. Kouklin, H. Chik, J. Liang, M. Tzolov, J. M. Xu and J. B. Heroux “Highly periodic, three-dimensionally arranged InGaAsN:Sb quantum dot arrays fabricated nonlithographically for optical device.” J. Phys. D. Appl. Phys. 36(2003):2634–2638.
[67] K. Liu, C. Leighton, H. Masuda, K. Nishio, Roshchin IV, et al. “Fabrication and thermal stability of arrays of Fe nanodots.” Appl. Phys. Lett. 81(2002) 4434–4436.
[68] Z. H. Su, X. C. Li and F. M. Qu “Investigation of the super-long alumina nanowire array synthesized with a novel method” Solid State Commun. 149 (2009) 1782-1785.
[69] M. Shaban, H. Hamdy and F. Shahin “Strong Surface Plasmon Resonance of Ordered Gold Nanorod Array Fabricated in Porous Anodic Alumina Template” J. Nanosci. Nanotech. 10 (2010) 3034-3037.
[70] H. Masuda , H. Yamada, M. Satoh and H. Asoh, "Highly ordered nanochannel-array architecture in anodic alumina", Appl. Phys. Lett. 71 (1997) 2770-2772.
[71] H . Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina” , Adv. Mater. 13 (2001) 189-192.
[72] Y. Lee, W. Lee and J. K. Lee “Fabrication of hierarchical structures on a polymer surface using patterned anodic aluminum oxide as a replication master” Thin Solid Films 516 (2008) 3431–3435.
[73] Y. Lei, W. Cai and G. Wilde, “Highly ordered nanostructures with tunable size,shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks” Progress in Materials Science 52 (2007) 465–539.
[74] P. Bocchetta, C. Sunseri and A. Bottino, “Asymmetric alumina membranes electrochemically formed in oxalic acid solution” J. Appl. Electrochem . 32. (2002) 977-985.
[75] I. Vrublevsky, V. Parkoun,V. Sokol and J. Schreckenbach, “Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique” Appl. Surf. Sci. 236 (2004) 270-277
[76] Z. J. Li and K.L. Huang, “The effect of high-temperature annealing on optical properties of porous anodic alumina formed in oxalic acid” Luminescence 22 (2007) 355-361.
[77] H. W. Yang, Z. Zhang and X. N. Duan, “Fabrication of ultra thin porous alumina membrane on silicon substrate” Acta Physico-Chimica Sinca 18 (2007) 495604.
[78] C. Y. To, L. Y. Cheung and Y. F. Li, “Synthesis of ultra thin alpha-alumina nanobelts from aluminum powder by chemical vapor deposition” J. Eur. Ceram. Soc. 27 (2007) 2629-2634
[79] J. C. Hulteen , D. A. Treichel and M. T. Smith “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays” J. Phys. Chem., b 103 (1999) 3854-3863
[80] Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291 (2001) 851-853.
[81] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, “Sequence-Specific Label-Free DNA Sensors Based on Sili con Nanowires,” Nano Lett. 4 (2004) 245-247.
[82] X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman, “High-Performance Thin-Film Transistors Using Semiconductor Nanowires and Nanoribbons,” Nature 425 (2003) 274-278.
[83] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors,” Nano Lett. 3 (2003) 149-152.
[84] J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, “Silicon Vertically Integrated Nanowire Field Effect Transistors,” Nano Lett. 6 (2006) 973-977.
指導教授 鄭紹良(Shao-liang Cheng) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明