參考文獻 |
[1] K. V. Klitzing, G. Dorda and M. Pepper, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance” Phys. Rev. Lett. 45 (1980) 494-497.
[2] Z. Yao, H. W. C. Postma, L. Balents and C. Dekker, “Carbon nanotube intramolecular junctions” Nature 402 (1999) 273-276.
[3] W. Barthlott and C. Neinhuis, “Purity of the sacred lotus,or escape from contamination in biological surfaces” Planta 202 (1997) 1-8.
[4] K. Autumn and Y. A. Liang, “Adhesive force of a single gecko foot-hair” Nature 405 (2000) 681-685.
[5] M. Zheng, G. Li, X. Zhang, S. Huang, Y. Lei and L. Zhang, “Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrane” Chem. Mater. 13 (2001) 3859-3861.
[6] X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays” Chem. Mater. 13 (2001) 2511-2515.
[7] S. Miserendino, J. Yoo, A. Cassell and Y. C. Tai, “Electrochemical characterization of parylene-embedded carbon nanotube nanoelectrode arrays” Nanotechnology 17 (2006) S23-S28.
[8] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile and C. P. Tripp, “Template-assisted fabrication of dense aligned arrays of titania nanotubes with well-controlled dimensions on substrates” Adv. Mater. 16 (2004) 2052-2057.
[9] K. Wegner, P. Piseri, H. V. Tafreshi and P. Milani, “Cluster beam deposition: a tool for nanoscale science and technology” J. Phys. D: Appl. Phys. 39 (2006) R439-R459.
[10] J. Fang, X. Ma, H. Cai, X. Song and B. Ding, “Nanoparticle-aggregated 3D monocrystalline gold dendritic nanostructures” Nanotechnology 17 (2006) 5841-5845.
[11] J. Chen and L. M. Wu, “Syntheses and characterizations of Bismuth nanofilms and nanorhombuses by thestructure-controlling solventless method” Inor. Chem. 46 (2007) 586-591.
[12] K. L. Hobbs, P. R. Larson, G. D. Lian, J. C. Keay and M. B. Johnson, “Fabrication of nanoring arrays by sputter redeposition using porous alumina templates” Nano Letter 4 (2004) 167-171.
[13] T. Y. Zhang, W. Zhao and J. C. Cao, “Optical response in a quantum dot superlattice nanoring under a lateral electric field” Phys. Rev. B. 72 (2005) 165310-1-6.
[14] F. Sun, J. C. Yu and X. Wang, “Construction of size-controllable hierarchical nanoporous TiO2 ring arrays and their modifications” Chem. Mater. 18 (2006) 3774-3779.
[15] V. I. Klimov, A. A. Mikhailovsky, S. Xu, “Optical gain and stimulated emission in nanocrystal quantum dots” Science 290 (2000) 314-317.
[16] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han and Y. H. Lee, “Fully sealed, high-brightness carbon-nanotube field-emission display” Appl. Phys. Lett. 15 (1999) 3129-3131.
[17] E. Comini, G. Faglia and G. Sberveglieri, “Stable and highly sensitive gas sensors based on semiconductingoxide nanobelts” Appl. Phys. Lett. 81 (2002) 1869-1871
[18] Y. R. Ma, C. M. Lin and C. L. Yeh, “Synthesis and characterization of one-dimensional WO2 nanorods” J. Vac. Sci. Techno., B 23 (2005) 2141-2145.
[19] I. Dökme, S. E. Altındal and M. Gökçen, “Frequency and gate voltage effects on the dielectric properties of Au/SiO2/n-Si structures” Microelectronic Engineering. 85 (2008) 1910–1914
[20] M. N. Baibich, J. M. Broto, A. Fert and F. Nguyen, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices” Phys. Rev. Lett. 61 (1998) 2472–2475
[21] M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin and H. Yoneyam, “Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for Lithium batteries” J. Electro. Soc. 144 (1997) 1923-1927.
[22] D. Almawlawi, N. Coombs and M. Moskovits, “Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size” J. Appl. Phys. 70 (1991) 4421-4425.
[23] A. Birner, U. Grüning, S. Ottow, A. Schneider and F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range” Phys. Stat. Sol. (a). 165 (1998) 111-117.
[24] S. B. Tang, A. Tang, S. B. Tang and M. O. Lai, “Electrochemical studies of low-temperature processed nano-crystalline LiMn2O4 thin film cathode at 55 ◦C” J. Power Sources. 164 (2007) 372-378.
[25] H. Li, T. Xu, C. Wang, J. Chen, H. Zhou and H. Liu, “Annealing effect on the structure, mechanical and tribological properties of hydrogenated diamond-like carbon films” Thin Solid Films 515 (2006) 2153-2160.
[26] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a 2-step replication of honeycomb structure of anodic alumina” Science 268 (1995) 5216-5219.
[27] N. Tsuya, T. Tokushima, M. Shiraki, Y. Wakui, Y. Saito, H. Nakamura, S Hayano, A. Furugori, and M. Tanaka, “Alumite disk using anodic oxidation” IEEE Trans. Magn. 22 (1986) 1140.
[28] K. L. Hobbs, P. R. Larson, G. D. Lian, J. C. Keay, and M. B. Johnson, “Fabrication of nanoring arrays by sputter redeposition using porous alumina templates” Nano Lett. 4 (2004) 167.
[29] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina” Science 268 (1995) 1466-1468.
[30] G. Patermarakis and K. Moussoutzanis, “Electrochemical kinetic study on the growth of porous anodic film on aluminium” Electrochim. acta. 40 (1995) 699-708.
[31] H. Pan, J. Lin, Y. Feng and H. Gao, “Electrical-bridge model on the self-organized growth of nanopores in anodized aluminum oxide” IEEE Transactions on Nanotechnology 3 (2004) 462-467.
[32] D. A. Vermilyea, “Stresses in anodic films” J. Electrochem. Soc. 110 (1963) 345.
[33] A. J. Brock and G. C. Wood, “Studies on the structure of anodic oxide films on aluminim” Electrochim. Acta 12 (1967) 395.
[34] T. P. Hoar, D. C. Mears, and G. P. Rothwell, “The relationships between anodic passivity, brightening and pitting” Corros. Sci. 5 (1965) 279.
[35] F. Y. Li, L. Zhang and R. M. Metzger, “On the growth of highly ordered pores inanodized aluminum oxide” Chem. Mater. 10 (1998) 2470.
[36] J. A. Treverton, and N .C. Davies, “XPS studies of dc and ac anodic films on aluminum formed in surphuric acid” Electrochim. Acta 25 (1980) 1571.
[37] S. Tajima, “Luminescence, breakdown and colouring of anodic oxide film on aluminum” Electrochim. Acta 22 (1977) 995.
[38] K. Shimizu, G. E. Thompson, and G. C. Wood, “Preparation of regularly structured porous metal membranes with two different hole diameters at the two sides” Electrochim. Acta 27 (1982) 245.
[39] L. Zhang, H. S. Cho and F. Li, “Cellular growth of highly ordered porous anodic films on aluminum” Thin Solid Films 92 (1982) 231.
[40] F. Keller, M. S. Hunter and D. L. Robinson, “Structural Features of Oxide Coatings on Aluminium” J. Electrochem. Soc., 100, (1953) 411-419.
[41] H. Ghik, J. Liang and S. G. Cloutier, “Periodic array of uniform ZnO nanorods by second-order self-assembly” Appl. Phys. Lett. 84 (2004) 3376-3378
[42] Y. G. Guo, L. J. Wan and Zhu CF, “Ordered Ni-Cu nanowire array with enhanced coercivity” Chem. Mater. 15 (2003) 664-447.
[43] G.. P. Sklar, K. Paramguru and M. Misra, “Pulsed electrodeposition into AAO templates for CVD growth of carbon nanotube arrays” Nanotechnology 16 (2005) 1265-1271.
[44] F. H. Wang, Y. F. Tu and J. P. Sang “Aspect ratio-dependent optical properties of Ni-P/AAO nano-array composite structure” J. Mater. Sci. 45 (2010) 16-22.
[45] Y. F. Liu, F. H. Wang and D. L. Guo, “Effects of heat treatment on optical absorption properties of Ni–P/AAO nano-array composite structure” Appl. Phys. A 97 (2009) 677–681.
[46] J. J. Liu, F. Wang, J. Y. Zhai “Controllable growth and magnetic characterization of electrodeposited nanocrystalline Ni-P alloy nanotube and nanowire arrays inside AAO template” J. Electro. Chem. 642 (2010) 103-108.
[47] W. Wang, N. Li and X. T. Li, “Synthesis of metallic nanotube arrays in porous anodic aluminum oxide template through electroless deposition” Mater. Res. Bull. 41 (2006) 1417-1423.
[48] N. Tasaltin, S. Ozturk and N. Kilinc “Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte” Nanoscale Res. Lett. 5 (2010) 1137-1143.
[49] N. Esman and J. P. Lellouche “Fabrication of functional polypyrrole (PolyPyr)-nanotubes using anodized aluminium oxide (AAO) template membranes. Compromising between effectiveness and mildness of template dissolution conditions for a safe release of PolyPyr-nanotubes” Polymer Chemistry 1 (2010) 158-160.
[50] H. Gao , C. Mu and F. Wang, “Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template” J. Appl. Phys. 93 (2003) 5602-5605
[51] B. B. Lakshmi, P. K. Dorhout, and C. R. Martin, “Sol-gel template synthesis of semiconductor nanostructures” Chem. Mater. 9 (1997) 857.
[52] Z. Miao, D. S. Xu and J. H. Ouyang, “Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires” Nano Letters 2 (2002) 717-720.
[53] G. Gorokh, A. Mozalev and D. Solovei “Anodic formation of low-aspect-ratio porous alumina films for metal-oxide sensor application” Electrochim. Acta 52 (2006) 1771–1780
[54] D. Crousea and Y. H. Lo, “Self-ordered pore structure of anodized aluminum on silicon and pattern transfer” Appl. Phys. Lett. 76 (2000) 49-51.
[55] W. H. Kim, S. J. Park and J. Y. Son ,“Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition” Nanotechnology 19 (2008) 045302.
[56] Y. Lei and W. K. Chim, “Shape and Size Control of Regularly Arrayed Nanodots Fabricated Using Ultrathin Alumina Masks” Chem. Mater. 17 (2005) 580-584.
[57] M. Kokonou, C. Rebholz, K. P. Giannakopoulos and C.C. Doumanidis, “Low aspect-ratio porous alumina templates” Microelectronic Engineering 85 (2008) 1186–1188.
[58] G. Y. Zhao, C. L. Xu, D. J. Guo and H. Li, “Template preparation of Pt nanowire array electrode on Ti/Si substrate for methanol electro-oxidation” Appl. Surf. Sci. 253 (2007) 3242–3246.
[59] J. Xu and X. Huang “Pulsed electrodeposition of monocrystalline Ni nanowire array by intermittent symmetric square wave” Mater. Lett. 62 (2008) 1491-1494
[60] H. S. Seo, Y. G. Jung and S. W. Jee, “Compositionally bilayered feature of interfacial voids in a porous anodic alumina template directly formed on Si” Scripta Materialia 57 (2007) 968–971.
[61] M. Kokonou, A. G. Nassiopoulou, K. P. Giannakopoulos and A. Travlos, “Growth and characterization of high density stoichiometric SiO2 dot arrays on Si through an anodic porous alumina Template” Nanotechnology 17 (2006) 2146–2151
[62] P. L.Chen and C. T. Kuo, “Self-organized titanium oxide nanodot arrays by electrochemical anodization” Appl. Phys. Lett. 82 (2003) 2796-2798.
[63] H. Masuda and M. Satoh. “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask.” Jpn. J. Appl. Phys. 35(1996)L126–9
[64] H. Masuda, K. Yasui and K. Nishio. “Fabrication of ordered arrays of multiple nanodots using anodic porousalumina as an evaporation mask.” Adv. Mater. 12 (2000) 1031-1033
[65] X. Y. Mei, M. Blumin, M. Sun M, D Kim, Z. H. Wu and H. E. Ruda“Highly ordered GaAs/AlGaAs quantum-dot arrays on GaAs (001) substrates grown by molecular-beam epitaxy using nanochannel alumina masks.” Appl. Phys. Lett. 82(2003)967–969.
[66] N. Kouklin, H. Chik, J. Liang, M. Tzolov, J. M. Xu and J. B. Heroux “Highly periodic, three-dimensionally arranged InGaAsN:Sb quantum dot arrays fabricated nonlithographically for optical device.” J. Phys. D. Appl. Phys. 36(2003):2634–2638.
[67] K. Liu, C. Leighton, H. Masuda, K. Nishio, Roshchin IV, et al. “Fabrication and thermal stability of arrays of Fe nanodots.” Appl. Phys. Lett. 81(2002) 4434–4436.
[68] Z. H. Su, X. C. Li and F. M. Qu “Investigation of the super-long alumina nanowire array synthesized with a novel method” Solid State Commun. 149 (2009) 1782-1785.
[69] M. Shaban, H. Hamdy and F. Shahin “Strong Surface Plasmon Resonance of Ordered Gold Nanorod Array Fabricated in Porous Anodic Alumina Template” J. Nanosci. Nanotech. 10 (2010) 3034-3037.
[70] H. Masuda , H. Yamada, M. Satoh and H. Asoh, "Highly ordered nanochannel-array architecture in anodic alumina", Appl. Phys. Lett. 71 (1997) 2770-2772.
[71] H . Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina” , Adv. Mater. 13 (2001) 189-192.
[72] Y. Lee, W. Lee and J. K. Lee “Fabrication of hierarchical structures on a polymer surface using patterned anodic aluminum oxide as a replication master” Thin Solid Films 516 (2008) 3431–3435.
[73] Y. Lei, W. Cai and G. Wilde, “Highly ordered nanostructures with tunable size,shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks” Progress in Materials Science 52 (2007) 465–539.
[74] P. Bocchetta, C. Sunseri and A. Bottino, “Asymmetric alumina membranes electrochemically formed in oxalic acid solution” J. Appl. Electrochem . 32. (2002) 977-985.
[75] I. Vrublevsky, V. Parkoun,V. Sokol and J. Schreckenbach, “Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique” Appl. Surf. Sci. 236 (2004) 270-277
[76] Z. J. Li and K.L. Huang, “The effect of high-temperature annealing on optical properties of porous anodic alumina formed in oxalic acid” Luminescence 22 (2007) 355-361.
[77] H. W. Yang, Z. Zhang and X. N. Duan, “Fabrication of ultra thin porous alumina membrane on silicon substrate” Acta Physico-Chimica Sinca 18 (2007) 495604.
[78] C. Y. To, L. Y. Cheung and Y. F. Li, “Synthesis of ultra thin alpha-alumina nanobelts from aluminum powder by chemical vapor deposition” J. Eur. Ceram. Soc. 27 (2007) 2629-2634
[79] J. C. Hulteen , D. A. Treichel and M. T. Smith “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays” J. Phys. Chem., b 103 (1999) 3854-3863
[80] Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291 (2001) 851-853.
[81] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, “Sequence-Specific Label-Free DNA Sensors Based on Sili con Nanowires,” Nano Lett. 4 (2004) 245-247.
[82] X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman, “High-Performance Thin-Film Transistors Using Semiconductor Nanowires and Nanoribbons,” Nature 425 (2003) 274-278.
[83] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors,” Nano Lett. 3 (2003) 149-152.
[84] J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, “Silicon Vertically Integrated Nanowire Field Effect Transistors,” Nano Lett. 6 (2006) 973-977.
|