參考文獻 |
[1] Carrette, L., Friedrich, K. A., and Stimming, U., Fuel cells-fundamentals and applications, Fuel Cells, Vol. 1, pp. 5-39, 2001
[2] Gergor, H., Fuel cell technology handbook, CRC Press, 2003.
[3] Larminie, J., and Dicks, A., Fuel cell system explained, 2nd Ed., John Wiley & Sons Ltd., England, 2005.
[4] Kee, R. J., Korada, P., Walters, K. and Pavol, M., A generalized model of the flow distribution in channel networks of planar fuel cells, J. Power Sources, Vol. 109, pp. 148-159, 2002.
[5] 顏正和,平板式固態氧化物燃料電池雙極板之流道設計與流場觀測,國立中央大學機械工程學系,碩士論文,2004年。
[6] 簡暐珉,平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析,國立中央大學能源工程研究所,碩士論文,2008年。
[7] Kee, R. J., Zhu, H.Y. and Goodwin, D. G., Solid-oxide fuel cells with hydrocarbon fuels, P. Combust. inst., Vol. 30, pp. 2379-2404, 2005.
[8] Yang, S., Ramakrishna, P. A. and Sohn, C.H., Issues related to the modeling of solid oxide fuel cell stacks, J. Mech. Eng. Sci., Vol. 20, pp. 391-398, 2006.
[9] Pasaogullari, U. and Wang, C. Y., Computational fluid dynamics modeling of solid oxide fuel cells, in: Singhal, S. C. and Dokiya, M., (Eds.), 8th International Symposium on Solid Oxide Fuel Cells (SOFC VII), The Electrochemical Society Proceedings Series, Paris, France, pp. 1403-1412, 2003.
[10] Bi, W.X., Li, J. Y. and Lin, Z. J., Flow uniformity optimization for large size planar solid oxide fuel cells with U-type parallel channel designs, J. Power Sources, Vol. 195, pp. 3207-3214, 2010.
[11] de Haart, L. G. J., Vinke, I. C., Janke, A., Ringel, H. and Tietz, F., New developments in stack technology for anode substrate based SOFC, in: Yokokawa, H. and Singhal, S. C. (Eds.), 7th International Symposium on Solid Oxide Fuel Cells (SOFC VII), The Electrochemical Society Proceedings Series, Pennington, New Jersey, pp. 111-119, 2001.
[12] Yakabe, H., Ogiwara, T., Hishinuma, M. and Yasuda, I., 3-D model calculation for planar SOFC, J. Power Sources, Vol. 102, pp. 144-154, 2001.
[13] Boersma, R. J. and Sammes N. M., Computational analysis of the gas-flow distribution in solid oxide fuel cell stacks, J. Power Sources, Vol. 63, pp. 215-219, 1996.
[14] Boersma, R. J. and Sammes N. M., Distribution of gas flow in internally manifolded solid oxide fuel-cell stacks, J. Power Sources, Vol. 66, pp. 41-45, 1997.
[15] Wang, H. X., An estimation method for ununiformity degree of fluid flow distribution in fuel cell stacks, J. Eng. Appl. Sci., Vol. 2, pp. 208-213, 2007.
[16] Wang, H. X. and Wang, Y. X., Estimation method for ununiformity degree of fluid flow distribution in fuel cell stacks, Journal of Tianjin University, Vol. 40, pp. 181-186, 2007.
[17] Shyam Prasad, K. B., Suresh, P. V. and Jayanti, S., A hydrodynamics network model for interdigitated flow fields, Int. J. Hydrogen Energ., Vol. 34, pp. 8289-8301, 2009.
[18] Martín, D., Guinea, D. M., Moreno, B., González, L., García-Alegre, M. C., Guinea, D., Electric modeling and image analysis of channel flow in bipolar plates, Int. J. Hydrogen Energ., Vol. 32, pp. 1572-1581, 2007.
[19] Hu, P., Peng, L. F., Zhang, W. G., Lai, X. M., Optimization design of slotted-interdigitated channel for stamped thin metal bipolar in proton exchange membrane fuel cell, J. Power Sources, Vol. 187, pp. 407-414, 2009.
[20] Zhang, W. G., Hu, P., Lai, X. M. and Peng, L. F., Analysis and optimization of flow distribution for proton exchange membrane fuel cells, J. Power Sources, Vol. 194, pp. 931-940, 2009.
[21] Kim, S. Y., Choi, E. S. and Cho, Y. I., The effect of header shapes on the flow distribution in a manifold for electronic packaging applications, Int. Commun. Heat Mass, Vol. 22, pp. 329-341, 1995.
[22] Tong, J. C. K., Sparrow, E. M. and Abraham, J. P., Geometric strategies for attainment of identical outflows through all of the exit ports of a distribution manifold in a manifold system, Appl. Therm. Eng., Vol. 29, pp. 3552-3560, 2009.
[23] Tonomura, O., Tanaka, S., Noda, M., Kano, M., Hasebe, S. and Hashimoto, I., CFD-based optimal design of manifold in plate-fin microdevices, Chem. Eng. J., Vol. 101, pp. 397-402, 2004.
[24] Tonomura, O., Kano, M., Hasebe, S. and Hashimoto, I., CFD-based analysis of heat transfer and flow pattern in plate-fin micro heat exchangers, Proceedings of International Symposium on Control of Chemical Plants (PSE Asia 2002), pp.109-114, Taipei, Taiwan, Dec. 4-6, 2002.
[25] Griffini, G. and Gavriilidis, A., Effect of microchannel plate design on fluid flow uniformity at low flow rates, Chem. Eng. Technol., Vol. 30, pp. 395-406, 2007.
[26] Nie, J., Chen, Y. T., Cohen, S., Carter, B. D. and Boehm, R. F., Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis cell, Int. J. Therm. Sci., Vol. 48, pp. 1914-1922, 2009.
[27] Bi, W. X., Chen, D. F. and Lin, Z. J., A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks, Int. J. Hydrogen Energ., Vol. 34, pp. 3873-3884, 2009.
[28] Park, J. W., Li, X. G., Effect of flow and temperature distribution on the performance of a PEM fuel cell stack, J. Power Sources, Vol. 162, pp. 444-459, 2006.
[29] Chen, C. H., Jung, S. P. and Yen, S. C., Flow distribution in the manifold of PEM fuel cell stack, J. Power Sources, Vol. 173, pp. 249-263, 2007.
[30] Kays, K. E. and Crawford, M. E., Convective Heat and Mass Transfer, McGraw-Hill, New York, 1980.
[31] Maharudrayya, S., Tayanti, S. and Deshpande, A. P., Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells, J. Power Sources, Vol. 144, pp. 94-106, 2005.
[32] Sung, Y. J., Optimization of a fuel-cell manifold, J. Power Sources, Vol. 157, pp. 395-400, 2006.
|