博碩士論文 973203029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:13.58.13.181
姓名 黃濬緯(Jun-Wei Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 金屬連接板氧化行為及表面塗層改善研究
(Research on the Oxidation Behavior and Surface Coating Modifications of Metal Coupling Plates)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 固態氧化物燃料電池(Solid oxide fuel cell,SOFC)操作溫度約800℃,金屬連接板在此高溫長時間之運轉過程中易生成氧化膜,其氧化膜是由不同成分的氧化物所組成,且氧化膜厚度可能不是均勻的,隨著長時間操作其氧化膜會有增生現象,造成導電率下降而影響SOFC 的整體效率。如何減緩連接板氧化層的生長速率,首先必需了解氧化層本身的特性及生成機制,然後設法增加金屬材料本身的抗氧化能力或藉由披覆保護性塗層來阻礙氧離子擴散進入連接板表面以減少氧化物生成。本研究選擇三種肥粒鐵系不鏽鋼分別為,Crofer22 APU、ZMG 232、中鋼ZMG 232做為材料並以網印法塗覆LSCF:結果如下
1. 肥粒鐵系不鏽鋼經800℃空氣氧化後其氧化膜是由(Mn,Cr3)O4 spinel與Cr2O3所構成。許多文獻提到連接板中添加微量的Al、Si元素可增加抗氧化能力;但經過實驗分析後發覺,添加Al、Si元素並無明顯阻抗氧化物生成的能力。
2. LSCF經1000℃持溫50分鐘燒結後,LSCF成穩定的相且塗層與金屬連接板間附著性良好,經800℃空氣氧化後的氧化皮膜厚度皆較未塗覆時低,這也意謂此塗層材料可有效阻礙氧離子擴散通過塗層到Crofer22 APU界面,以降低氧化皮膜成長。將已塗覆LSCF連接板放入800℃加熱爐進行電性量測(Area-specific Resistance, ASR),證實LSCF擁有良好的導電性。在經由WDS分析後顯示塗覆材料中有部份的Cr存在,其原因為cobaltite結構(輝鈷礦)容易吸附Cr元素所導致。
摘要(英) The operation temperature of the solid oxide fuel cell (SOFC) is about 800℃. Metal coupling plates performing under these conditions are prone to producing thin oxide films with increasing time. The film possesses different oxide structures and compositions, the film could also be non- homogeneous. The oxide film thickness grows with time; causing a decrease in conductivity, therefore influences the total efficiency of the SOFC. In order to reduce the growth rate of oxide layer, one must first understand the nature and growing mechanisms of the film. One can reduce the formation of oxides by using protective coatings on the surface to impede oxygen ions diffusing into the surface or by increasing the metal material’s anti-oxidation abilities. This research chooses three types of ferritic stainless steels, Crofer22 APU, ZMG 232 and China Steel ZMG 232, respectively as the basic experimental materials and uses screen printing LSCF. The results are as follow:
1. The oxide films of the ferritic stainless steels, oxidized in 800℃ air, are composed of (Mn,Cr3)O4 spinel and Cr2O3. According to many references , adding trace elements Al and Si into the coupling plates can increase the material’s anti-oxidation abilities. However, after experimental analyses, there is no obvious increase in its ability to impede oxide formation after Al and Si were added.
2. LSCF possesses a stable phase and the coating layer has good adhesion with the metal coupling plates after sintering at 1000℃ for 50 minutes. Also the oxidation layer thickness of the coated specimens is thinner than uncoated ones after oxidizing in 800℃ air. The results indicate that the coatings can effectively stop the oxygen ions passing though the coating to the Crofer22 APU interface and reduce oxide film growth. We prove that LSCF has a good conductivity by placing plates coated with LSCF and performing Area-specific Resistance(ASR) test at 800℃. WDS analysis indicates that the coatings partially consists of Cr, this is due to its cobaltite structure which easily adheres Cr.
關鍵字(中) ★ 氧化膜
★ 固態氧化物燃料電池
★ 網印法
★ 輝鈷礦
關鍵字(英) ★ LSCF
★ Oxide scale
★ ASR
論文目次 目 錄
第一章 緒 論 1
1.1 前言 1
1.2 燃料電池發展簡介 3
1.3 研究目的 5
第二章 文獻回顧 7
2.1 固態氧化物燃料電池 7
2.2 SOFC工作原理 7
2.2.1 固態氧化物燃料電池架構 9
2.2.2 電解質 10
2.2.3 陽極 11
2.2.4 陰極 11
2.2.5 連接板 12
2.3 金屬連接板材料之研究 12
2.3.1 鉻基合金 15
2.3.2 鎳基合金 17
2.3.3 鐵基合金 20
2.4 金屬連接板表面處理 25
2.5 金屬連接板的接觸電阻 29
第三章 實驗方法 32
3.1 實驗流程 32
3.2 試片準備 33
3.4 LSCF漿料備製 37
3.5 LSCF網印與燒結 39
3.6 高溫氧化 41
3.7 高溫電阻量測 42
3.7.1 不同時間之電阻量測 43
3.8 表面形貌及成分分析 45
3.8.1 試片表面與斷面的微觀形貌 45
3.8.2 XRD相分析 45
3.8.3 WDS分析 45
3.9 分析設備 46
第四章 結果與討論 47
4.1 表面顯微組織觀察 47
4.2 連接板高溫氧化後EDS與XRD分析 49
4.3 連接板高溫氧化後SEM影像觀察 58
4.4 氧化層生成行為 66
4.5 電性量測與連接板的優劣性 68
4.6 塗覆保護層LSCF之氧化層觀察與電性量測 70
第五章 結論 82
參考文獻 83
參考文獻 參考文獻
1. 徐日豐、陳建忠 著作, “固態氧化物型燃料電池連接板熱應力分析” 核能研究所 工程及設施運轉組
2. 台灣燃料電池資訊網, http://www.tfci.org.tw/Fc/class.asp
3. 洪永杰, “固態氧化物燃料電池專利檢索與分析報告”, 元智大學 (2005)
4. S.de Souza, S.J Visco and L.C. De Jonghe, Solid State Ionics, Vol. 98, pp. 57(1997)
5. S.de Souza, S.J Visco and L.C. De Jonghe, Journal of the electrochemical Society, Vol. 144, pp. L35(1997)
6. M. Hirano, T. Oda, K. Ukai and Y. Mizutani, Solid State Ionics, Vol. 158, pp. 215-223(2003)
7. P. Kofstad and R. Bredesen, Solid State Ionics, Vol. 52, pp. 69-75(1992)
8. W. J. Quadakkers, H. Greiner, M. Hansel, A. Pattanaik, A.S.Khanna and W. Mallener, Solid State Ionics, Vol. 91, pp. 55-67 (1996)
9. W.Z. Zhu and S.C. Deevi, Materials Research Bulletin, Vol. 38, pp. 957-972(2003)
10. Wei Qu, J. L. Douglas and G. Ivey, Journal of Power Sources, Vol. 138, pp. 162-173(2004)
11. J. W. Fergus, Material Science and Engineering, Vol. A397, pp. 271-283(2005)
12. W. Z. Zhu and S. C. Deevi, Material Science and Engineering, Vol. A362, pp. 228-239(2003)
13. N.Q. Minh, Solid State Ionics, Vol. 174,pp. 271–277(2004)
14. D. Stover, H.P. Buchkremer and S. Uhlenbruck, Ceramics International, Vol. 30, pp. 1107-1113(2004)
15. T. Ishihara, H. Matsuda, and Y. Takita, Journal of the American Chemical Society, vol. 116, pp. 3801-3803(1994)
16. M. Hirano, T. Oda, K. Uki and Y. Mizutani, Solid State Ionics, Vol. 158, pp. 215-223(2003)
17. Y. J. Leng, S. H. Chan, S. P. Jiang and K. A. Khor, Solid State Ionics, Vol. 170, pp. 9-15(2004)
18. J. Mizusaki, H. Tagawa, Y. Miyaki, S. yamauchi and K. Hirano, Solid State Ionics, Vol. 53,pp. 126-134(1992)
19. W. Z. Zhu and S. C. Deevi, Materials Science and Engineering, Vol. A362, pp. 4405-4439(2003)
20. S. P. Jiang and S. H. Chan, Journal of Materials Science, Vol. 39, pp. 4405-4439(2004)
21. A. Ringuede, J. A. Labrincha and J. R Frade, Solid State Ionics, Vol. 141-142, pp. 549-557(2001)
22. D. Simwonis, F. Tiets and D. Stover, Solid State Ionics, Vol. 132, pp. 241-251(2000)
23. N. Q. Minh, C. E. Mcpheeters and J. E.Brule,“Monolithic Solid Oxide Fuel Cell Technology Development Phase IA” Final Report(1989)
24. P. Elliott, A. A. Ansari and R. Nabovi, Corrosion Science, Vol. 44, 544-554, (1988).
25. F. H. Stott, G. C. Wood and J. Stringer, Oxidation of Metals, Vol. 44, pp. 113-195(1995)
26. I.G. Wright, B.A. Pint, C.S. Simpson and P.F. Tortorelli, Materials Science Forum. 251-254, 195-202,(1997)
27. S. P. S. Badwal, Solid State Ionics, Vol. 143, pp. 39-46(2001)
28. 敖青、李德輝、孫良成、李勝利、劉偉明,金屬熱處理,Vol. 27 NO. 11,PP. 8-10(2002)
29. 孫良成、李德輝、李勝利、付貴福、敖青、周天亮,工業加熱,Vol. 33 NO. 3,PP. 27-31(2004)
30. 韓敏芳、彭蘇萍,固體氧化物燃料電池材料與製備,科學出版社,2004年3月
31. 溫樹林、倫寧、付貴富、吳崇志、劉偉明、敖青、李勝利,電子顯微學報,Vol. 21 NO. 5,PP. 691-692(2002)
32. R. Koc and H. U. Anderson, Journal of Materials Science, Vol. 27, pp. 5837-5843(1992)
33. I. Yasuda and T. Hikita, The Electrochemical Society, Vol. 140, pp. 1699-1704(1993)
34. G. V. Samsonovin, The Oxide Handbook, pp. 125(1973)
35. R. Bredesen and P. Kofstad, Proceeding of Second European Solid Oxide Fuel Cell Forum, Vol. 2, pp. 567(1996)
36. Wei Qu, J. L. Douglas and G. Ivey, Journal of Power Sources, Vol. 138, pp. 162-173, (2004)
37. H. Yokoawa, N. Sakai and M. Dokiya and T. Iwata, Journal. Electrochemical Society, Vol. 138, pp. 1018(1991)
38. Metals Handbook:Properties and Selection: Stainless, Tool Materials and Special-Purpose Metals, 9th ed. Vol. 3, ASM, Park (1980)
39. L. Jian, P. Jian, H. Bing and G. Xie, Journal of Power Sources, Vol. 159, pp. 641-645(2006)
40. W.J. Qudakkers, H. Greiner and W. Kock, Proceedings of the First European Solid Oxide Fuel Cell Forum, Vol. 1, pp. 525(1994)
41. W.J. Quadakkers, T. Malkow and P. Albellan, Proceedings of the Fourth European Solid Oxide Fuel Cell Forum, Vol. 2, pp. 827(2000)
42. M. Ueda and H. Taimatsu, Proceedings of the Fourth European Solid Oxide Fuel Cell Forum, Vol. 2, pp. 837(2000)
43. S. J. Geng, J. H. Zhu and Z. G. Lu, Solid State Ionics, Vol. 177, pp. 559-568(2006)
44. S. Elangovan and J. Hartvigsen, McDermott Technology, Inc.(2000)
45. H. Kurokawa, K. Kawamura and T. Maruyama, Solid State Ionics, Vol. 168, pp. 13-21(2004)
46. T. Malkow, W. J. Quadakkers, L. Singheiser and H. Nickel,“Report Forschungszentrum Julich”, Julich, FRG, Jul-3589, ISSN 0944-2952(1998)
47. T. Malkow, U. V. D. Crone, A. M. Laptev, T. Koppitz, U. Breuer and W. J. Quadakkers, The Electrochemical Society Proceedings Series, Pennington, NJ, PV97-40, pp. 1245(1997)
48. S. Fontana, R. Amendolab, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, M. Sennour, Journal of Power Sources, Vol. 171, 652–662(2007)
49. Z. Yang, G.G. Xia, G.D. Maupin and J.W. Stevenson, Surface and Coatings Technology, Vol. 201, pp. 4476-4483(2006)
50. J. J. Choi, J.H. Lee, D.S. Park, B.D. Hahn and W.H. Yoon, Journal of the American Ceramic Society, Vol. 90, pp. 1926-1929(2007)
51. 王朝正 國立台灣科技大學機械工程研究所,計劃編號:NSC-95-2218-E-11-1,報告
52. J. H. Kim, R. J. Song and S. H. Hyun, Solid State Ionics, Vol. 174, pp 185-191(2004)
53. W.Z. Zhu and S.C. Deevi, Materials Science and Engineering, Vol. A348, pp. 227–243(2003)
54. T. Brylewski, M. Nanko, T. Maruyama and K. Przybylski, Mater. Chem. Phys., Vol. 81, pp. 434–437(2003)
55. S. Fontana, R. Amendolab, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, M. Sennour, Journal of Power Sources, Vol. 171, pp. 652–662(2007)
56. C. Wagner and Z. Physik, Chemical, B21, 25-41, (1933).
57. W. Z. Zhu and S. C. Deevi, Materials Research Bulletin, Vol. 38, pp. 957-972(2003)
58. 林韋杉,LSCF塗層於2205DSS高溫氧化及電性之研究,國立臺灣科技大學機械研究所碩士學位論文,民國97年7月。
59. T. Horita, Y. Xiong, H. Kishimoto, K. Yamaji, N. Sakai and H. Yokokawa, Journal of Power Sources, Vol. 131, pp. 293-298(2004)
60. Z. Yang, J.S. Hardy, M.S. Walker, G. Xia, S.P. Simner, and J.W.Stevenson, Journal of The Electrochemical Society, Vol. 151, pp. 1825-1831(2004)
61. Zhenguo Yang, Guan-Guang Xia, Matthew S.Walker1, Chong-MinWang, JeffryW. Stevenson, Prabhakar Singh, Journal of Hydrogen Energy, Vol. 32, pp. 3770-3777(2007)
62. The Science and Engineering of Materials 4th Edition By Donald R, Askeland and Pradeep P.Phule
63. E. Konysheva , U. Seeling, A. Besmehn, L. Singheiser, K. Hilpert, Journal Mater Science, Vol. 42, pp. 5778–5784(2007)
64. Zhenguo Yang , Guanguang Xia, Prabhakar Singh, Jeffry W. Stevenson, Journal of Power Sources, Vol. 155, pp. 246–252(2006)
指導教授 李雄(Shyong Lee) 審核日期 2010-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明