博碩士論文 973203041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.141.4.111
姓名 林裕彬(Yu-Bin Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 多孔矽上非磊晶形成類晶矽薄膜之研究
(Study in Forming Quasi-Crystal Si Film on Porous Silicon layer without Epitaxy)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 絕緣層矽晶(Silicon on insulator, SOI)材料結構是目前半導體製程中最具發展性的材料之一,可以有效解決奈米尺度下所會遭遇到的問題,如漏電流、閉鎖效應。而Smart-Cut?製程是近來最常用於製作絕緣層矽晶材料之技術。其原理是利用高劑量的氫離子佈植於矽晶圓內,再經晶圓鍵合製程與退火處理,使氫離子聚集產生剝離以達到薄膜轉移之目的。但是離子佈值設備高昂,使用高強度離子束時容易損傷晶圓,且佈值深度難以超過1μm。
本實驗研究之目的為使用電化學蝕刻的方式,在不同的蝕刻參數下,以電化學蝕刻重?雜之P型矽晶圓,蝕刻出不同構造的多孔矽結構,再輔以Argon高溫退火處理,進而做出具有深埋破裂層與數μm厚的多孔回復晶矽薄膜。多孔回復晶矽薄膜可沿著深埋破裂層施以微小應力而產生剝離,達到薄膜轉移之目的。和Smart-Cut?製程相比,可以完成數μm厚的薄膜轉移,成本又便宜非常多。
摘要(英) The Silicon on Insulator (SOI) is one of the most developmental material in the process of semiconductor now, which can effectively solve the problem in the process of nanometer scale , like leakage effect, latch up. Smart-Cut? is a common technology for manufacturing the SOI. By implanting the high dosage of hydrogen ions into the silicon wafers, followed with wafer bonding process and annealing, the hydrogen ions will gather and crack to finish Layer Transfer. But the implanting depth is difficult to over 1 μm and implanting the high dosage of hydrogen ions may damage the silicon wafer, moreover, the equipment is expensive.
This purpose of the thesis is to fabricating some different porous silicon layers by using electrochemical etching with specific parameters and the heavily doped P-type silicon wafer. Followed with Argon high temperature annealing, the porous silicon with a buried separation layer and capping cavity-free layer is finish.The capping cavity-free layer can be split when a small stress is applied on the buried separation layer. It provides another process to fabricate SOI material. Compared to Smart-Cut? , Our process can make thicker layer transfer and the price is cheaper.
關鍵字(中) ★ 電化學蝕刻
★ 多孔矽
★ 絕緣層矽晶
★ 高溫退火
關鍵字(英) ★ Quasi-Crystal Si Film
★ Silicon on insulator
★ Annealing
★ electrochemical etching
★ Porous Silicon
★ Argon
論文目次 摘要 .................................................................................................................... i
Abstract ............................................................................................................... ii
誌謝 ................................................................................................................... iii
目錄 ................................................................................................................... iv
圖目錄 ............................................................................................................... vi
表目錄 ................................................................................................................ x
第一章 緒論 ...................................................................................................... 1
1.1 研究背景 ............................................................................................. 1
1.2 研究目的 ............................................................................................. 3
第二章 原理與文獻回顧 .................................................................................. 8
2.1 多孔矽簡介 ......................................................................................... 8
2.2 多孔矽製作技術 ................................................................................. 9
2.3 多孔矽電化學蝕刻的電壓-電流特性 ............................................ 11
2.4 多孔矽蝕刻的表面化學反應 ........................................................... 13
2.5 多孔矽的形成機制 ........................................................................... 16
2.5.1 The Beale Model ..................................................................... 16
2.5.2 The Quantum Model .............................................................. 17
2.5.3 The Diffusion-Limited Model ................................................. 17
2.6 多孔矽的橫向蝕刻 ........................................................................... 18
2.7 多孔矽的高溫退火 ........................................................................... 19
第三章 實驗準備與流程 ................................................................................ 30
3.1 實驗試片與器材準備 ....................................................................... 30
3.2 實驗晶片清潔 ................................................................................... 31
3.3 電化學蝕刻設備 ............................................................................... 33
3.4 高溫退火設備 ................................................................................... 34
3.5 分析儀器介紹 ................................................................................... 35
第四章 結果與討論 ........................................................................................ 41
4.1 電化學蝕刻多孔矽 ........................................................................... 41
4.1.1 不同定電流的電化學蝕刻多孔矽之結果 ............................ 42
4.2 高溫退火雙層多孔矽 ....................................................................... 44
4.2.1 雙層多孔矽的蝕刻結果 ........................................................ 45
4.2.2 Ar高溫退火之多孔矽結構變化結果 .................................. 46
4.2.3 Ar高溫退火雙層多孔矽之結果 .......................................... 48
4.3 電化學蝕刻多孔矽結果之探討 ....................................................... 50
4.4 高溫退火多孔矽結果之探討 ........................................................... 52
4.5 高溫退火雙層多孔矽的結果之探討 ............................................... 53
第五章 結論 .................................................................................................... 79
參考文獻 .......................................................................................................... 81
參考文獻 〔1〕 J. Bardeen, W. H. Brattain, Phys. Rev., Vol.71, pp. 230, 1948.
〔2〕 Moore Gordon E. , “Cramming more components onto integrated circuits”, Electronics Magazine, pp. 4, 1965.
〔3〕 J. B. Lasky, et al., “Silicon-on-Insulator (SOI) by Bonding and Etch-Back”, Electron Devices Meeting, 1985 International, Vol. 31, pp. 684-687, 1985.
〔4〕 G. K. Celler and S. Cristoloveanu, “Frontiers of Silicon-on- Insulator”, Journal of Applied Physics, Vol. 93, Issue 9, pp. 4955-4978, 2003.
〔5〕 H. Xiao 著,半導體製程技術導論,羅正忠和張鼎張譯,二版,臺灣培生教育出版,臺北市,民國九十三年
〔6〕 莊達人,VLSI 製造技術,五版,高立圖書有限公司,臺北縣,民國九十一年。
〔7〕 J. B. Kuo and K.-W. Su, CMOS VLSI Engineering:
Silicon-on-Insulator (SOI), Kluwer Academic Publishers, Boston,82 1998.
〔8〕 J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, 3rd Edition, Springer Science+Business Media, Inc., New York, 2004
〔9〕 Q, -Y. Tong and U. Gossel, Semiconductor Wafer Bonding: Science and Technology, John Wiley, New York, 1999.
〔10〕 M. Bruel, “Silicon on insulator material technology”. Electronics Letters, Vol. 31, Issue 14, pp. 1201-1202, Jul 1995.
〔11〕 T.-H. Lee, “Semiconductor thin film transfer by wafer bonding and adcaced ion implantation layer splitting technologies”, Duke University, Ph.D. Dissertation, 1998.
〔12〕 A. Uhir, “Electrolytic shapping of germanium and silicon”, Bell System Tech. J., Vol. 35, pp. 333, 1956.
〔13〕 P Steiner, F. Kozlowski, and W. Lang, “Blue and Green Electroluminescence from a Porous Silicon Device”, IEEE EDL, vol.14, no.7, pp.317-319, 1993.
〔14〕 J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok, “ Highly sensitive photodetector using porous silicon”, Appl. Phys. Lett., Vol.61, pp.459-461, 1992.
〔15〕 Hei Wong, “ Recent developments in silicon optoelectronic devices, ”Microelectronics Reliability, vol.42, pp. 317-326, 2002.
〔16〕 J.A. Walker, ”The future of MEMS in telecommunications networks”, J.Micromech. Microeng., 10, R1, 2000.
〔17〕 R.C. Anderson, R.S. Muller and C.W. Tobia , “Porous polycrystalline silicon: a new material for MEMS”, JMEMS, Vol. 3, pp. 10–17, 1994.
〔18〕 VSY Lin, K Motesharei, KPS Dancil, MJ Sailor, “A porous silicon-based optical interferometric biosensor”, Science, Vol. 278, pp.83, 840 - 843, 1997.
〔19〕 KPS Dancil, DP Greiner, MJ Sailor, “A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface”, J. Am. Chem. Soc, Vol. 121, pp 7925–7930, 1999.
〔20〕 X.G. Zhang, S.D. Collins, R.L. Smith, “Porous Silicon Formation and Electropolishing of Silicon by Anodic Polarization in HF Solution”, J. Electrochem. Soc., Vol. 136, Issue 5, pp. 1561-1565, 1989.
〔21〕 X.G. Zhang, “Mechanism of Pore Formation on n?Type Silicon”, J.electrochem. Soc., Vol. 138, Issue 12, pp. 3750-3756, 1991.
〔22〕 V. Lehmann, “The Physics of Macropore Formation in Low Doped n-Type Silicon”, J.electrochem. Soc., Vol. 140, pp. 2836, 1993.
〔23〕 C. Pickering, M.J. Beale, D.J. Robbins, P.J. Pearson, and R. Greef, “Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon”, J. Phys. C: Solid state Phys., Vol. 17, pp. 5535, 1984.
〔24〕 M.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Uren, N.G. Chew and A.G. Cullis, “An experimental and theoretical study of the formation and microstructure of porous silicon”, J. Cryst. Growth, Vol.73, pp. 622, 1985.
〔25〕 M.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Uren, N.G. Chew, and A.G. Cullis, “Microstructure and formation mechanism of porous silicon”, Appl. Phys. Lett., Vol. 46, pp. 86, 1985.
〔26〕 I. M. Young, M. I. Beale and J.D. Benjamin, “X?ray double crystal diffraction study of porous silicon”, Appl. Phys. Lett., Vol.46, pp. 1133, 1985.
〔27〕 R.L. smith, S.D. Collins, “Porous silicon formation mechanism”, J. Appl. Phys., Vol. 71, R1, 1992.
84
〔28〕 V. Lehmann, H. Foll, “Formation mechanism and properties of electrochemically etched trenches in n-type silicon”, J. Electrochem. Soc., Vol. 137, pp. 653, 1990.
〔29〕 V. Lehmann, W. Honlein, R. Reisinger, A. Spitzer, H. Wendt, and J. Willer, “A novel capacitor technology based on porous silicon” Thin Solid Films, Vol. 276, pp. 138, 1996.
〔30〕 V. Lehmann, U. Gosele, “Porous silicon formation: A quantum wire effect”, Appl. Phys. Lett., Vol. 58, pp. 865, 1991.
〔31〕 V. Lehmann, “Porous silicon-a new material for MEMS”, Proc. MEMS’96, pp. 1-6 , 1996.
〔32〕 A.J. Read, R.J. Needs, K.J. Naish, L.T. Canham, P.D.J. Calcott, and A. Qteish, “First-principles calculations of the electronic properties of silicon quantum wires”, Phys, Rev. Lett., Vol. 69, pp. 1232, 1992.
〔33〕 G. D. Sanders and Y. C. Chang, “Theory of optical properties of quantum wires in porous silicon”, Phys. Rev. B, Vol. 45, pp. 856, 1992.
〔34〕 V. Lehmann, U. G?sele, “Porous silicon formation: A quantum wire effect”, Appl. Phys. Lett., Vol. 58, pp. 856, 1991.
〔35〕 R.L. Smith, S.F. Chuang, and S.D. Collins, “A theoretical model of the formation morphologies of porous silicon”, J. Electron. Mater., Vol.17, pp. 533, 1988.
〔36〕 R.L. Smith and S.D. Collins, “Generalized model for the diffusion-limited aggregation and Eden models of cluster growth”, Phys. Rev. A, Vol. 39, pp. 5409, 1989.
〔37〕 R.L. Smith and S.D. Collins, “Porous silicon formation mechanisms”Phys. J. Appl. Phys., Vol. 71, R1, 1992.
〔38〕 T.A. Witten and L.M. Sander, “Diffusion-limited aggregation”Phys. Rev. B, Vol. 27, pp. 5686, 1983.
85
〔39〕 C. S. Solanki et al. “New approach for the formation and separation of a thin porous silicon layer”, phys. Stat. sol. (a) , Vol.182, pp. 97, 2000
〔40〕 C. S. Solanki, R. R. Bilyalov, J. Poortmans, J.-P. Celis, J. Nijs., “Effect of the composition of electrolyte on separation of porous silicon film by electrochemical etching”, phys. Stat. sol. (a), Vol. 182, pp. 97, 2000
〔41〕 V. Labunov, V. Bondarenko, I. Glinenko, A. Dorofeev and L. Tabulina ,“Heat treatment effect on porous silicon”, Thin Solid Films, Vol. 137, pp.123-134, 1986.
〔42〕 G. M?ller, M. Nerding, N. Ott, H. P. Strunk, and R. Brendel,“Sintering of porous silicon”, phys. stat. sol. (a), Vol. 197, pp. 83-87, 2003.
〔43〕 Reza Abbaschian, Robert E., Reed-Hill, Physical Metallurgy Principles, 3rd Edition, PWS Kent Publishing Company, Boston, 1992.
〔44〕 Randall M. German, Sintering Theory and Practice, John Wiley & Sons Inc, New York, 1996.
〔45〕 N. Ott, M. Nerding, G. Mu‥ ller and R. Brendel, H. P. Strunk, “Evolution of the microstructure during annealing of porous silicon multilayers”, J. Appl. Phys., Vol. 95, pp. 497-503, 2004.
〔46〕 M. Banerjee, E. Bontempi, S.Bhattacharya , S. Maji , S. Basu, H. Saha, “Thermal annealing of porous silicon to develop a quasi monocrystalline structure”, J Mater Sci: Mater Electron, Vol.20, pp. 305-311, 2009.
〔47〕 周欣麟,「奈米尺度多孔矽製作絕緣層矽晶材料之研究」,國立中央大學,碩士論文,民國九十八年。
指導教授 李天錫(Tien-His Lee) 審核日期 2010-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明