博碩士論文 93333018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.226.34.80
姓名 黃銘德(Ming-Te Huang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
(Laser power setting optimization for AMC removal on silicon wafer)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 球墨鑄鐵的超音波檢測
★ 模具溫度對TV前框高亮光澤產品研討★ 高強度7075-T4鋁合金之溫間成形研究
★ 鎂合金燃燒、鑽削加工與表面處理之研究★ 純鈦陽極處理技術之研發
★ 鋁鎂合金陽極處理技術之研發★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響
★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響★ 製程參數對A356鋁合金品質的影響及可靠度的評估
★ 噴砂與前處理對鋁合金陽極皮膜品質的影響★ 鎂合金回收重溶之品質與疲勞性質分析
★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響
★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響★ 不同輥軋及退火製程對AA5052-H32鋁陽極皮膜生長的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 晶圓生產良率的提升一直是半導體業界努力積極力找尋的低投資成本目標,然而面對製程技術不斷的提升以及奈米技術的進階發展,製程技術已從早期低階125 nm / 110 nm 奈米製程進而發展演進至現今高階奈米技術 90 nm / 70 nm/ 60 nm / 50 nm / 40 nm…..等。然而吸附於矽晶圓薄膜表面的分子機載源污染(AMC, Airborne Molecular Contamination)對矽晶圓製程在高階奈米技術的開發中,被視為生產良率與技術競爭力提升的一個議題,因為矽晶圓會隨著時間與無塵室環境中的有機物質與酸鹼物質反應,進而使得分子機載源污染成為矽晶圓表面之吸附物,此分子機載源污染的吸附結果而造成矽晶圓薄膜厚度量測的不穩定性。
尤其現在閘極氧化層(Gate Oxide, SiO2) 厚度隨著高階奈米製程的需求已愈作愈薄,其氧化層厚度已從90 nm 製程所要求的100 Å 演變成現今50 nm 製程所需求的30 Å,而且分子機載源污染的吸附生成與成長對如此薄的閘極氧化層來說,會因為分子機載源污染的吸附而造成更大的薄膜厚度量測值誤差值。尤其是該閘極氧化層厚度的誤差值量測會導致介電層的漏電流現象而影響電晶體的電性,進而影響矽晶圓的製程能力與生產良率。
如今業界對此分子機載源污染的成長做了不同的預防與檢測,不同方法對矽晶圓廠實際運用上有著不同的技術考量。因此,此報告為研究利用雷射去除法將矽晶圓閘極氧化層表面已吸附的分子機載源污染去除,並經由實驗數據分析以得到雷射設定參數最佳化之後,使得閘極氧化層厚度量測在高階奈米技術中成為一個具有可靠度的量測。
摘要(英) Semiconductor industry keeps searching for low cost investment. Wafer manufacturing trends to improve yield in order to reach the goal of cost reduction. The nanometer technology development keeps moving forward to progress from 125 nm process to 40 nm process;that is from low-end to high-end technology. However, the airborne molecular contamination (AMC) that is readily to adhere to wafer thin film is considered as a barrier for improving yield and competitiveness, which should be eliminated in the progress of high-end technology development. Affected by the processing time, AMC reacts with organic atmosphere from environment leading to be absorbable on wafers, the existence of AMC affects the thin film quality and impacts
the thin film metrology.
Nowadays, the gate oxide is getting thinner due to the requirement of high-end technology. The thickness is from 100 Å for 90 nm process to 30 Å for 50 nm process.
The growth of AMC on gate oxide builds up metrology gap between inspections. This gap results in current leaking at gate oxide to obtain a yield issue in the manufacturing
process.
Actions have been taken in industry to prevent AMC growth along with inspection of AMC. The manufacturing has different applications in practice according to different methodologies. This study focuses on AMC elimination by laser and on optimization of laser parameters. The experimental results can assure the thickness metrology of gate oxide to be reliable value.
關鍵字(中) ★ 奈米技術
★ 閘極氧化層
★ 分子機載源污染
關鍵字(英) ★ yield improvement
★ nanometer technology
★ gate oxid
論文目次 中文摘要----------------------------------------------------------------------------------------- i
英文摘要-----------------------------------------------------------------------------------------ii
總目錄-------------------------------------------------------------------------------------------iii
圖目錄------------------------------------------------------------------------------------------- v
符號說明------------------------------------------------------------------------------vii
第一章前言--------------------------------------------------------------------------------------1
第二章文獻回顧-------------------------------------------------------------------------------2
2.1 研究動機---------------------------------------------------------------------------------2
2.2 相關研究---------------------------------------------------------------------------------3
2.2.1 閘極----------------------------------------------------------------------------------3
2.2.2 閘極厚度對電性的影響----------------------------------------------------------3
2.2.3 量測閘極的方式及優缺點-------------------------------------------------------4
2.3 何謂分子機載源污染--------------------------------------------------------------4
2.4 分子機載源污染之分類----------------------------------------------------------5
2.5 量測Accufilm 的重要性--------------------------------------------------------------6
2.6 薄膜量測的技術與原理---------------------------------------------------------------7
2.6.1 雙光束光譜光學量測系統-----------------------------------------------7
2.6.2 光譜橢圓偏振光學量測系統----------------------------------------------7
2.6.3 單一波長橢圓偏振光學量測系統-------------------------------------8
2.7 量測模型---------------------------------------------------------------------------------9
2.7.1 光學薄膜量測----------------------------------------------------------------------9
2.7.2 雷射原理----------------------------------------------------------------------------9
2.7.3 雷射分類---------------------------------------------------------------------------10
2.7.4 何謂Idesorbe r ---------------------------------------------------------------------11
2.7.5 何謂Accufilm量測系統---------------------------------------------------------11
第三章實驗方法與步驟--------------------------------------------------------------------13
3.1 實驗目的---------------------------------------------------------------------------------13
3.2 實驗材料---------------------------------------------------------------------------------13
3.3 試片規格---------------------------------------------------------------------------------13
3.4 實驗設備---------------------------------------------------------------------------------13
3.4.1 實驗設備簡介----------------------------------------------------------------------14
3.4.2 實驗設備應用----------------------------------------------------------------------15
3.5 實驗流程--------------------------------------------------------------------------------17
3.6 分子機載源污染去除法---------------------------------------------------------------17
3.6.1 烘烤式去除----------------------------------------------------------------------18
3.6.2 單點雷射去除----------------------------------------------------------------------18
3.6.3 不同方法之優缺點----------------------------------------------------------------19
第四章實驗結果與討論--------------------------------------------------------------------20
4.1 分子機載源污染之成長與去除-------------------------------------------------20
4.1.1 分子機載源污染之成長分析------------------------------------------------20
4.1.2 有效地去除分子機載源污染-------------------------------------------------21
4.1.3 雷射強度之設定與驗證----------------------------------------------------------23
4.1.4 不同雷射強度對去除率的影響-------------------------------------------------24
第五章結論-----------------------------------------------------------------------------------26
參考文獻-----------------------------------------------------------------------------------------27
參考文獻 [1] 陳建豪,「超薄氮化閘極介電層應用深次微米互補式金氧半電晶體製程的研究」,國立成功大學電機工程學系,博士班論文,台南,民國九十一年
[2] 陳經緯、簡昭欣、余昱穎,「在具有超薄(EOT=1.6 nm) 氮化閘極氧化層之0.13μm n 型金氧半電晶體中由熱電子所引發於閘極絕緣層內之電子捕獲現象」,交通大學電子研究所,國家奈米實驗室,新竹,民國九十四年
[3] 陳佑瑋、李育釗,「高介電常數閘極介電層TDDB崩潰行為之研究」,逢甲大學電子工程學系,台中,民國九十八年
[4] A. Gupta, P. Fang, M. Song, M.R. Lin, D. Wollesen, K. Chen, and C. Hu“Accurate Determination of Ultrathin Gate Oxide Thickness and Effective Polysilicon Doping of CMOS Devices”, IEEE Electron Devise , Vol. 18, pp.
12-14, 1997
[5] D. Vasileska, D.K. Schroder and D.K. Ferry, “Scaled Silicon MOSFET’s:Degradation of the Total Gate Capacitance”, IEEE Transactions On Electron
Devices, Vol 44, No. 4 , pp. 3-5, 1997
[6] B. Mann, “Development of Thin Gate Oxides for Advanced CMOS Applications”,Annual Microelectronic Engineering , Vol 22, pp. 4-6, 2004
[7] D.G. Watson and C. Kisielowski “Characterization of Hyper-Thin Oxynitride Gate Dielectrics Through XPS & Exit Wave Reconstruction HRTEM”,National Center for Electron Microscopy, Ernest Orlando Lawrence Berkeley
National Laboratory, Berkeley, USA, pp. 7-9, 2005
[8] 莊達人,「VLSI 製造技術」,高利圖書,台灣,頁385-423,1998
[9] C.F. Yeh, C.W. Hsiao, S.J. Lin, C.M. Hsieh, T. Kusumi, H. Aomi and H. Kaneko,“The Removal of Airborne Molecular Contamination in Cleanroom Using PTFE and Chemical Filters”, IEEE Transactions on Semiconductor Manufacturing, Vol.17, No. 2, pp. 35-38, 2004
[10] I.H. Nam, “Ultra-Thin Gate Oxide Grown on Nitrogen Implanted Silicon”, IEEE Transactions on Electron Devices, Vol 48, No 10, pp 5-6, 2001
[11] D. Rodier and S. Rowley, Measurement System, Vol 36, pp. 25-27, 2008
[12] 簡禎富,「半導體製造技術與管理」,清華大學出版社,台灣,頁124-156,2005
[13] H.G. Tompkins and E.A Irene, Handbook of Ellipsometry William Andrews Publications, Spectroscopic Ellipsometry, Vol 12, pp. 11-13, 2005
[14]M. Ohring , “The Materials Science of Thin Films”, IEEE Electron Devise , Vol 2, pp. 24-27, 2001
[15] I. Ohlidal and D. Franta, “Ellipsometry of Thin Film Systems in Progress in Optics”, IEEE Electron Devise , Vol 41, pp. 56-58, 2000
[16] H. Fujiwara, “Spectroscopic Ellipsometry” Principles and Applications, John Wiley & Sons Inc, Vol 8, pp. 35-37, 2007
[17] C.W. Chen, C.L. Lin, P.Y. Hsieh and C.C. Wu, “Top-Emitting Organic Light-Emitting Device with High-Reflectivity Bottom Anode”, Institute of Electro-optical Engineering, Vol 14, pp. 5-8, 1998
[18] R. Sun, “Ellipsometry Ellisometer and Thin Films”, Massachusetts Institute of Technology, Vol 10, pp. 22-34, 2004
[19] C.H. Lee, “X-Ray Reflectivity measurement of Silicon Oxide layer on Si wafer”, Institute of Unclear Engineering, Vol 15, pp. 6-7, 1993
[20] A.C. Forsman, E.H. Lundgren, A.L. Dodell, A.M. Komashko and M.S. Armas,“A Nanosecond Pulse Format For Improving Laser Drilling”, General Atomic,
Vol 18, pp. 10-13, 2007
指導教授 施登士(Teng-Shih Shih) 審核日期 2010-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明