博碩士論文 973203053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.128.168.69
姓名 李國楨(Guo-jen Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 板式熱交換器之熱流模擬與熵增分析
(The numerical simulation of thermofluids and entropy generation in plate heat exchangers)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 微電滲泵之暫態熱流研究★ 高解析熱氣泡式噴墨頭墨滴成形觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究建立三維全尺寸的K070山型紋板式熱交換器模型,以數值模擬分析板式熱交換器的流場、壓降及熱傳特性,並以熱力學第二定律的熵增定理分析板式熱交換器的系統,找出最佳操作雷諾數。本研究的模型共有三個流道,工作流體為水,考慮的流道雷諾數介於300-12000之間,以ANSYS FLUENT套裝軟體進行層流和紊流分析,並與經驗關係式及解析解作驗證。
本研究預測的摩擦因子與其他研究學者提出的關係式接近,紊流部份誤差小於5%,層流部份平均誤差約11%。熱傳方面,由模擬結果得到冷水側及熱水側的熱傳關係式,預測值落於其他研究提出的關係式範圍之內,最大誤差小於36%。熵增加的分析結果顯示,K070型板式熱交換器的流道雷諾數為3900時,總熵增加最低,系統效率可達到理論的最大值。
本研究成功建立出多流道考慮共軛熱傳的板式熱交換器模型,且預測結果具有一定準確度,能在板式熱交換器的研發初期快速驗證設計理念,提供研究人員設計與改良的依據。
摘要(英) In this study, a three dimensional calculation with real-size geometry of K070 chevron plate heat exchanger which consisted of thee flow channels have been conducted. The characteristics of flow, pressure drop and heat transfer in plate heat exchangers are investigated numerically. Also, the analyses of second law of thermodynamics (i.e. entropy generation) are presented. The numerical simulations are carried out using ANSYS FLUENT with water as working fluid in the Reynolds number (Re) range from 300-12000, which cover laminar and turbulent regime, and numerical results were validated with empirical and analytical correlations.
The numerical friction factors are found in good agreement within 5% for turbulent flow and average error of 11% for laminar flow with empirical correlations. Nusselt number (Nu) correlations of cold and hot water side which obtained by numerical results have been proposed. Values of numerical Nu correlations agree within empirical and analytical correlations. Deviations of computed Nu with empirical and analytical correlations are up to 36%. The analyses of entropy generation indicate that the optimal Re of K070 plate heat exchangers is 3900.
A model of three channels chevron plate heat exchanger considered conjugate heat transfer has been established. It can be useful to verify the design concepts in the early research and development.
關鍵字(中) ★ 數值模擬
★ 板式熱交換器
★ 山形紋板片
★ 壓降
★ 熱傳
★ 紊流
★ 熵增加
關鍵字(英) ★ Heat transfer
★ Pressure drop
★ Chevron plate
★ Plate heat exchangers
★ Numerical simulation
★ Turbulent flow
★ Entropy generation
論文目次 摘要......................................................i
Abstract.................................................ii
致謝....................................................iii
目錄.....................................................iv
圖目錄..................................................vii
表目錄....................................................x
符號說明.................................................xi
第一章 緒論...............................................1
1.1 前言..................................................1
1.2 文獻回顧..............................................2
1.2.1 實驗研究............................................3
1.2.2 模擬研究............................................5
1.2.3 熵增加的研究........................................6
1.3 研究動機與目的........................................7
1.4 論文架構..............................................8
第二章 數值模擬計算方法..................................15
2.1 計算流體力學.........................................15
2.1.1 計算流體力學軟體簡介...............................16
2.2 幾何外型及基本假設...................................18
2.3 統御方程式...........................................19
2.4 紊流方法.............................................20
2.4.1 標準k-ε紊流模式....................................21
2.4.2 RNG k-ε紊流模式....................................22
2.4.3 Realizable k-ε紊流模式.............................23
2.5 壁面函數.............................................25
2.6 數值模擬.............................................26
2.6.1 網格生成...........................................26
2.6.2 邊界條件...........................................27
2.6.3 收斂標準...........................................27
2.7 物理量及熵增加之計算.................................28
2.7.1 壓降...............................................28
2.7.2 熱傳...............................................29
2.7.3 熵增加.............................................31
第三章 模擬驗證..........................................39
3.1 網格獨立性測試.......................................39
3.2 模擬驗證.............................................39
第四章 結果與討論........................................49
4.1 流場特性與壓降分析...................................49
4.2 熱傳性能分析.........................................51
4.3 熵增加分析...........................................53
第五章 結論..............................................71
5.1 結論.................................................71
5.2 未來改進方向.........................................72
參考文獻.................................................73
附錄A....................................................77
參考文獻 ANSYS, “ANSYS Fluent user’s guide,” ANSYS, Inc., 2009.
Bassiouny, M.K., Martin, H., “Flow distribution and pressure drop in PHE-I, U-type arrangement,” Chem. Eng. Sci., 39:693-700, 1984.
Bejan, A., ‘‘A study of entropy generation in fundamental convective heat transfer,’’ J. Heat Transfer, 101:718–725, 1979.
Bejan, A., “Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes,” J. Applied Physics, 79:1191-1218, 1996.
Ciofalo, M., Stasiek, J., and Collins, M.W., “Investigation of flow and heat transfer in corrugated passages-II. Numerical simulations,” Int. J. Heat and Mass Transfer, 39: 165–192, 1996.
Ciofalo, M., Piazza, I., and Stasiek, J., “Investigation of flow and heat transfer in corrugated-undulated passages,” Heat and Mass Transfer, 36:449–462, 2000.
Dovic, D., Palm, B., Svaic, S., “Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry,” Int. J. Heat and Mass Transfer, 52:4553-4563, 2009.
Focke, W.W., Knibble, P.G., Flow visualization in parallel plate ducts with corrugated walls, CSIR report CENC M-519, CSIR, Pretoria, South Africa, 1984.
Galeazzo, F.C.C., Miura, R.Y., Gut, J.A.W., Tadini, C.C., “Experimental and numerical heat transfer in a plate heat exchanger,” Chemical Engineering Science, 61: 7133-7138, 2006.
Huang, P., Bradshaw, P., Coakley, T., “Skin friction and velocity profile family for compressible turbulent boundary layers,” AIAA Journal, 31(9):1600-1604, 1993.
Incropera, F.P., Dewitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 2001.
Jain, S., Joshi, A., Bansal, P.K., “A new approach to numerical simulation of small sized plate heat exchangers with chevron plates,” J. Heat Transfer, 129:291-297, 2007.
Jayatilleke, C., “The influence of prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer,” Prog. Heat Mass Transfer, 1:193-321, 1969.
Kader, B., “Temperature and concentration profiles in fully turbulent boundary layers,” Int. J. Heat Mass Transfer, 24(9):1541-1544, 1981.
Kanaris, A.G., Mouza, A.A., Paras, S.V., “Flow and heat transfer in narrow channels with corrugated walls a CFD code application,” Chemical Engineering Research and Design, 83:460-468, 2005.
Kays, W.M., and London, A.L., Compact Heat Exchangers, McGraw-Hill, New York, 1984.
Kim, S.E., Choudhury, D., “A near-wall treatment using wall functions sensitized to pressure gradient,” Separated and Complex Flows, In ASME FED Vol.217, 1995.
Ko, T.H., Ting, K., “Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube,” Energy, 31:2142-2152, 2006.
Ko, T.H., “Analysis of optimal Reynolds number for developing laminar forced convection in double sine ducts based on entropy generation minimization principle,” Energy Conversion and Management, 47:655-670, 2006.
Launder, B.E., Spalding D.B., Lectures in Mathematical Models of Turbulence, Academic Press, 1972.
Mehrabian, M.A., Poulter, R., “Hydrodynamics and thermal characteristics of corrugated channels: computational approach,” Applied Mathematical Modeling, 24: 343-364, 2000.
Muley, A., Manglik, R.M., “Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates,” J. HeatTransfer, 121: 110–117, 1999.
Muley, A., Manglik, R.M., Metwally, H. M., “Enhanced heat transfer characteristics of viscous liquid flows in a chevron plate heat exchanger,” J. Heat Transfer, 121: 1011–1017, 1999.
Naterer, G.F., Camberos, J.A., Entropy-based design and analysis of fluids engineering systems, CRC Press, New York, 2008.
Okada, K., Ono, M., Tomimura, T., Okuma, T., Konno, H., Ohtani, S., “Design and heat transfer characteristics of new plate heat exchanger,” Heat Transfer Jpn. Res., 1:90–95, 1972.
Paakkonen, T.M., Riihimaki, M., Ylonen, R., Muurinen, E., Simonson, C.J. and Keiski, R.L., “Evaluation of heat transfer boundary conditions for CFD modeling of a 3D plate heat exchanger geometry,” Proceedings of 7th Int. Conference on heat exchanger fouling and cleaning challenges and opportunities, Vol. 5, Tomar, Portugal, 2007.
Rao, B.P., Das, S.K., “An experimental study on the influence of flow maldistribution on the pressure drop across a PHE,” J. Fluids Eng., 126:680-691, 2004.
Sahin, A.Z. and Ben-Mansour, R., “Entropy generation in laminar fluid flow through a circular pipe”, Entropy, 5:404-416, 2003.
Shih T.H., Liou W.W., Shabbir A., Yang Z., Zhu J., “A new k-ε eddy-viscosity model for high Reynolds number turbulent flows - model development and validation,” Computers Fluids, 24:227-238, 1995.
Tsai, Y.C., Liu, F.B., Shen, P.T, “Investigations of the pressure drop and flow distribution in a chevron-type plate heat exchanger,” Int. Communications in Heat and Mass Transfer, 36:574-578, 2009.
White, F., Christoph, G., “A simple new analysis of compressible turbulent skin friction under arbitrary conditions,” Technical Report AFFDL-TR-70-133, 1971.
Wolfstein, M., “The velocity and temperature distribution of one-dimensional flow with turbulence augmentation and pressure gradient,” Int. J. Heat Mass Transfer, 12:301-318, 1969.
Yakhot, V., Orszag, S.A., “Renormalization group analysis of turbulence: I. basic theory,” J. Scientific Computing, 1(1):1-51, 1986.
Zimparov, V., “Extended performance evaluation criteria for enhanced heat transfer surfaces: heat transfer through ducts with constant wall temperature,” Int J. Heat Mass Transfer, 43:3137–3155, 2000.
Zimparov, V., “Energy conservation through heat transfer enhancement techniques,” Int. J. Energy Res., 26:675–696, 2002.
王啟川,熱交換器設計,五南圖書出版有限公司,台中,2001。
曾廣彬,「板式熱交換器之流場模擬與流動分佈不均勻態分析」,國立中央大學機械工程研究所,碩士論文,2010。
羅弘達,「板式熱交換器之入出口壓降實驗分析」,國立中央大學機械工程研究所,碩士論文,2006。
翁嘉鴻,「水對水板式熱交換器性能測試分析」,國立中央大學機械工程研究所,碩士論文,2002。
指導教授 吳俊諆(Jiunn-chi Wu) 審核日期 2010-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明