博碩士論文 973203020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.226.214.40
姓名 劉彥佑(Yan-you Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 5-kW級聚光型太陽追蹤器結構變形與追日偏差分析
(Analysis of Structural Deformation and Concentrator Misalignment in a 5-kW Solar Tracker)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在利用有限元素分析法(FEA),探討一個5-kW級聚光型太陽光電系統之太陽追蹤器在受到重力及風力作用下運作,其結構變形和聚光模組的追日偏差量。分析的條件分別為無風之情況,以及在風速為7 m/s、12 m/s和37.5 m/s之情況,在每個風速作用下又各別分為風從聚光模組陣列的正面吹來和背面吹來二種風向。此外,本研究還對此太陽追蹤器反覆在不同追日角度下運作,估算其疲勞壽命。藉由量測此太陽追蹤器某些位置在實際操作情況下之應變變化,與模擬結果作比對,可驗證本研究所建立的有限元素分析模型之有效性。比對結果顯示,模擬結果之應變改變趨勢和實驗結果一致,此一致性證實本研究所建立之有限元素分析模型之有效性,可適用於分析聚光型太陽光電系統之結構變形。
根據von Mises準則,模擬結果顯示此太陽追蹤器在受到重力加上風速為7 m/s或12 m/s的作用下,各個零件中將不會有結構永久變形之情形發生。然而,在風速為37.5 m/s的作用下,此太陽追蹤器在某些追日角度下,某些零件中的最大應力值將大於其降伏應力,因此預期這些零件將會發生結構破損(塑性變形)。模擬結果顯示此追蹤器在不同追日角度下,聚光透鏡的追日偏差量的變化趨勢與其總位移大小的變化趨勢一致。因此,藉由找到擁有較大總位移的聚光透鏡,即可找到產生較大追日偏差量的聚光透鏡。除了在風速為37.5 m/s的作用下,在其他所有分析情況中,聚光透鏡在風速為12 m/s從聚光模組陣列的正面吹來的情況下會有最大的追日偏差量,其值為0.3度。此數值小於此聚光模組的可接受角度0.4度,所以預期此太陽追蹤器在風速為12 m/s的作用下仍可以正常運作,不會有明顯的發電效率下降。對此太陽追蹤器所估算的疲勞壽命為5.8 × 10的10次方天,因此預期本研究所分析之太陽追蹤器在正常的循環操作下不會發生結構破損之情形。
摘要(英) The purpose of this study is using finite element analysis (FEA) to investigate the effects of gravity and wind loads on the structural deformation and concentrator misalignment in a 5-kW high concentrated photovoltaic (HCPV) system. Several operation conditions, including no wind and wind speeds of 7, 12, and 37.5 m/s blowing to the front side and back side of concentrator arrays, were applied to simulate the stress distribution and structural deformation in the given solar tracker. The concentrator misalignment caused by the structural deformation was also calculated. An estimation of fatigue life was made for the given solar tracker under cyclic operation. A comparison of the simulation and measurement results of strain change at two selected locations in the given solar tracker during field operation was made to validate the constructed FEA model. A reasonable agreement of the simulation and measurement results was found such that the constructed FEA model was validated to be effective in assessment of the structural integrity of an HCPV system.
No structural failure was predicted for all the components in the given solar tracker under the loading conditions of gravity alone and plus a wind speed of 7 or 12 m/s according to the von Mises failure criterion. However, the von Mises equivalent stress in some components of the given solar tracker was larger than the yield stress at some zenith angles for a wind speed of 37.5 m/s such that a structural failure (plastic deformation) was predicted. An agreement in the trend of variation of misalignment and resultant displacement of Fresnel lens in each concentrator was found. Therefore, the concentrator with a greater misalignment could be readily identified from the corresponding displacement distribution. Given the conditions of no wind and wind speeds of 7 and 12 m/s, the maximum concentrator misalignment was 0.3 degree for a wind speed of 12 m/s blowing to the front side of concentrator arrays and it was within the range of an acceptance angle of 0.4 degree for the given concentrator. An estimation of fatigue life for the given solar tracker is 5.8 × 10 to the power of 10 days under a wind speed of 12 m/s. In this regard, no fatigue failure was predicted for the given solar tracker under a normally cyclic operation condition.
關鍵字(中) ★ 聚光型太陽能發電系統
★ 追日偏差
★ 太陽追蹤器
關鍵字(英) ★ HCPV
★ misalignment
★ solar tracker
論文目次 LIST OF TABLES...........................................................................................VII
LIST OF FIGURES...........................................................................................VIII
1. INTRODUCTION...........................................................................................1
1.1 Solar Energy...........................................................................................1
1.2 High Concentrated Photovoltaic System...........................................................................................2
1.2.1 Concentration module...........................................................................................3
1.2.2 Solar tracker...........................................................................................4
1.2.3 Inverter...........................................................................................5
1.3 Literature Review for Wind Effects on Solar Tracker Structure...........................................................................................6
1.4 Purpose and Scope...........................................................................................8
2. MODELING...........................................................................................11
2.1 Modeling for Structural Deformation...........................................................................................11
2.1.1 Finite element model and material properties...........................................................................................11
2.1.2 Loads and boundary conditions...........................................................................................12
2.2 Modeling for Wind Loads...........................................................................................14
2.2.1 Finite element model...........................................................................................14
2.2.2 Physical properties and boundary conditions...........................................................................................15
2.3 Definition of Concentrator Misalignment...........................................................................................16
3. DEFORMATION MEASUREMENT...........................................................................................17
3.1 Experimental Setup...........................................................................................17
3.2 Experimental Procedure...........................................................................................17
4. RESULTS AND DISCUSSION...........................................................................................19
4.1 Effect of Gravity Only...........................................................................................19
4.2 Effect of Wind Blowing to the Front Side of Concentrator Arrays...........................................................................................21
4.3 Effect of Wind Blowing to the Back Side of Concentrator Arrays...........................................................................................26
4.4 Estimation of Fatigue Life...........................................................................................28
5. CONCLUSIONS...........................................................................................32
REFERENCES...........................................................................................34
參考文獻 1. R. A. Messenger and J. Ventre, Photovoltaic Systems Engineering, 2nd Ed., CRC Press, Boca Raton, FL, USA, 2003.
2. T. Markvart, Solar Electricity, 2nd Ed., John Wiley & Sons Ltd., West Sussex, England, 2000.
3. D. Y. Goswami, F. Kreith, and J. F. Kreider, Principles of Solar Engineering, 2nd Ed., Taylor & Francis, Philadelphia, PA, USA, 1999.
4. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons Ltd., West Sussex, England, 2003.
5. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% Efficient Metamorphic GaInP/GaInAs/Ge Multijunction Solar Cells,” Applied Physics Letters, Vol. 90, 2007, pp. 183516-1-183516-3.
6. A. L. Luque and V. M. Andreev, Concentrator Photovoltaics, Springer-Verlag, Berlin, Germany, 2007.
7. A. Luque, G. Sala, and I. L. Heredia, “Photovoltaic Concentration at Onset of its Commercial Deployment,” Progress in Photovoltaics: Research and Applications, Vol. 14, 2006, pp. 413-428.
8. K. Araki, H. Uozumi, M. Yamaguchi, and Y. Kemmoku, “Development of a New 550x Concentrator Module with 3J Cells Performance and Reliability,” in Proceeding of the 15th International Photovoltaic Science & Engineering Conference, October 10-15, Shanghai, China, 2005.
9. M. Hein, F. Dimroth, G. Siefer, and A. W. Bett, “Characterisation of a 300x Photovoltaic Concentrator System with One-Axis Tracking,” Solar Energy Materials & Solar Cells, Vol. 75, 2003, pp. 277-283.
10. K. Araki, “500X to 1000X-R&D and Market Strategy of Daido Steel,” in Proceeding of the 4th International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, March 12-16, San Lorenzo del Escorial, Spain, 2007.
11. I. L. Heredia, C. Martin, M. T. Mananes, J. M. Moreno, J. L. Auger, V. Bodin, J. Alonso, V. Diaz, and G. Sala, “A Subdegree Precision Sun Tracker for 1000x Microconcentrator Modules,” in Proceeding of the 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, Osaka, Japan, 2003.
12. K. Ryu, J.-G. Rhee, K.-M. Park, and J. Kim, “Concept and Design of Modular Fresnel Lenses for Concentration Solar PV System,” Solar Energy, Vol. 80, 2006, pp. 1580-1587.
13. F. R. Rubio, M. G. Ortega, F. Gordillo, and M. L?pez-Mart?nez, “Application of New Control Strategy for Sun Tracking,” Energy Conversion and Management, Vol. 48, 2007, pp. 2174-2184.
14. P. Roth, A. Georgiev, and H. Boudinov, “Design and Construction of a System for Sun Tracking,” Renewable Energy, Vol. 29, 2004, pp. 393-402.
15. P. Roth, A. Georgiev, and H. Boudinov, “Cheap Two Axis Sun Following Device,” Energy Conversion and Management, Vol. 46, 2005, pp. 1179-1192.
16. K. K. Chong and C. W. Wong, “General Formula for On-Axis Sun-Tracking System and its Application in Improving Tracking Accuracy of Solar Collector,” Solar Energy, Vol. 83, 2009, pp. 298-305.
17. M. J. Clifford and D. Eastwood, “Design of a Novel Passive solar tracker,” Solar Energy, Vol. 77, 2004, pp. 269-280.
18. M. D. Archer and R. Hill, Clean Electricity from Photovoltaics, Imperial College Press, London, UK, 2001.
19. G. S. Wood, R. O. Denoon, and K. C. S. Kwok, “Wind Loads on Industrial Solar Panel Arrays and Supporting Roof Structure,” Wind and Structures, Vol. 4, No. 6, 2001, pp. 481-494
20. J. A. Peterka, Z. Tan, J. E. Cermak, and B. Bienkiewicz, “Mean and Peak Wind Loads on Heliostats,” Journal of Solar Energy Engineering, Transactions of the ASME, Vol. 111, 1989, pp. 158-164.
21. N Naeeni and M. Yaghoubi, “Analysis of Wind Flow Around a Parabolic collector (1) Fluid Flow,” Renewable Energy, Vol. 32, 2007, pp. 1898-1916.
22. I. Luque-Heredia, G. Qu?m?r?, P. H. Magalh?es, A. F. de Lerma, L. Hermanns, E. de Alarc?n, and A. Luque, “Modelling Structural Flexure Effects in CPV Sun Trackers,” in Proceeding of 21st European Photovoltaic Solar Energy Conference, September 4-8, Dresden, Germany, 2006.
23. C. Cancro, G. Graditi, G. Leanza, F. Pascarella, A. Sarno, and D. Mancini, “Field Testing of the PhoCUS Solar Tracker by Means of a Novel Optoelectronic Device,” in Proceeding of the 4th International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, March 12-16, San Lorenzo del Escorial, Spain, 2007.
24. N. E. Dowling, Mechanical Behavior of Materials, 3rd Ed., Pearson Education, Upper Saddle River, NJ, USA, 2007.
指導教授 林志光(Chih-kuang Lin) 審核日期 2010-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明