博碩士論文 973203011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.117.102.227
姓名 陳俊宇(Jun-yu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 固態氧化物燃料電池金屬連接板與玻璃陶瓷接合件機械性質分析
(Analysis of Mechanical Properties for the Joint of Metallic Interconnect and Glass Ceramic)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在探討玻璃陶瓷和金屬連接板間的接合強度及破壞模式,所使用的玻璃陶瓷為核能研究所開發的一款代號為GC-9的材質,金屬連接板則是使用代號為Crofer 22 H和APU的商用肥粒鐵系不銹鋼。藉由製作兩款三明治試片,分別量測接合件在室溫與800 oC下的剪力及張力強度,並評估試片接合溫度、金屬連接板的預氧化處理、玻璃膠塗佈面的數量、時效處理、金屬連接板成分等因素對於接合件強度的影響。
結果顯示,在900 oC下接合的試片,其張力強度和剪力強度皆高於在850 oC下接合的試片,乃是在較高的溫度下,玻璃陶瓷在金屬連接板上的潤濕性質會較好,二者的接合性也較佳。金屬連接板在900 oC下的預氧化處理並沒有助於接合強度的提升,且過多的預氧化處理反而會造成接合強度明顯的下降。雙層玻璃膠試片的接合強度高於單層玻璃膠的試片強度,乃是由於雙層玻璃膠試片的玻璃與金屬在接合過程中會有較好的潤濕效果。比起未時效試片而言,不同時效處理試片的接合強度值下降幅度為17~19%。至於比較Crofer 22 H和APU二款金屬連接板試片的接合強度,可以發現Crofer 22 H試片提供較高的接合強度。
由微結構及破斷面分析結果發現剪力接合試片有三種破壞模式。第一,脫層現象發生在玻璃陶瓷基材與鉻酸鋇層的界面,此破壞模式所對應的接合強度是最低的。第二,脫層現象發生於玻璃陶瓷基材與鉻酸鋇層的界面和破裂發生於玻璃陶瓷基材內部,具有中等的接合強度。第三,脫層現象發生於金屬連接板與氧化鉻層的界面和玻璃陶瓷基材與鉻酸鋇層的界面,此種破壞模式所對應的接合強度是最高的。至於張力接合件,破壞發生於玻璃陶瓷基材的內部會伴隨著較高的接合強度,破壞發生在玻璃陶瓷基材與鉻酸鋇層的界面和玻璃陶瓷基材內部則會伴隨著較低的接合強度。
摘要(英) The objective of this study is to investigate the joint strength between a glass-ceramic sealant and metallic interconnect. The applied materials were the GC-9 glass ceramic developed at the Institute of Nuclear Energy Research (INER) and the commercial Crofer 22 H and APU ferritic stainless steels. A methodology of evaluating the joint strength at room temperature (RT) and 800 oC was developed by testing two types of sandwich-like specimens under shear and tensile loading.
The effects of joining temperature, pre-oxidization of metallic interconnect, number of initial spreading side, aging treatment, and composition of metallic interconnect on the joint strength at RT and 800 oC were studied. The measured shear strength of the specimens joined at 900 oC was greater than that of those joined at 850 oC. Apparently, an increase of joining temperature could improve the joining performance due to a better wetting behavior of glass ceramic. A pre-oxidization treatment at 900 oC for 2 h did not generate a beneficial effect on the shear and tensile joint strength for all the given testing conditions. The joint strength of specimens with a double-layer of glass-ceramic sealant was greater than that of single-layer ones due to a better wetting behavior of the GC-9 glass-ceramic sealant in contact with the metal slice during joining. Compared to the shear strength at 800 oC for the unaged joint specimens, a 17-19% reduction of joint strength was observed for the aged ones with various aging times. In comparison of the shear joint strength between Crofer 22 H and APU specimens, it is found that an addition of Nb and W elements in the Crofer 22 H steel provides a greater bonding strength with the GC-9 glass-ceramic sealant.
Through the analysis of interfacial microstructure, fracture modes of the joint were correlated with the measured strength. Three types of fracture modes were identified for the shear joint specimens. Firstly, the lowest joint strength was accompanied by delamination at the interface between the glass-ceramic substrate and an adjacent oxide layer, chromate (BaCrO4). Secondly, fracture at the interface between the GC-9 glass-ceramic sealant and the chromate layer as well as in the GC-9 layer accompanied a medium joint strength. Thirdly, a high level of joint strength was accompanied by delamination at the interface between the metal substrate and the Cr2O3 layer as well as at the interface between the GC-9 substrate and BaCrO4 layer. For the tensile joint specimens, a greater joint strength accompanied fracture in the glass-ceramic layer. However, delamination at the interface between the GC-9 substrate and BaCrO4 layer was also involved in the fracture in addition to the fracture of the glass-ceramic layer, for a lower level of tensile joint strength.
關鍵字(中) ★ 固態氧化物燃料電池
★ 連接板
★ 玻璃陶瓷
關鍵字(英) ★ SOFC
★ interconnect
★ glass ceramic
論文目次 LIST OF TABLES VI
LIST OF FIGURES VII
1. INTRODUCTION 1
1.1 Solid Oxide Fuel Cell 1
1.2 Joint of Glass-Ceramic Sealant and Metallic Interconnect 2
1.3 Purposes and Scope 5
2. MATERIAL AND EXPERIMENTAL PROCEDURES 7
2.1 Materials and Specimen Preparation 7
2.2 Mechanical Testing 9
2.3 Microstructural Analysis 10
3. RESULTS AND DISCUSSION 11
3.1 Effect of Joining Temperature on the Joint Strength 12
3.2 Effect of Pre-Oxidization on the Joint Strength 14
3.3 Effect of Number of Initial Spreading Side on the Joint Strength 18
3.4 Effect of Aging Treatment on the Joint Strength 22
3.5 Effect of Composition of Metallic Interconnect on the Joint Strength 25
3.6 Overall Comparison 27
4. CONCLUSIONS 30
REFERENCES 32
TABLES 35
FIGURES 38
參考文獻 1. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. A362, 2003, pp. 228-239.
2. J. Malzbender, J. Mönch, R. W. Steinbrech, T. Koppitz, S. M. Gross, and J. Remmel, “Symmetric Shear Test of Glass-Ceramic Sealants at SOFC Operation Temperature,” Journal of Materials Science, Vol. 42, 2007, pp. 6297-6301.
3. T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, 2002, pp. 513-519.
4. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, 2005, pp. 46-57.
5. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, 2007, pp. 3465-3476.
6. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, 2007, pp. 238-251.
7. A.-S. Chen, “Thermal Stress Analysis of a Planar SOFC Stack with Mica Sealants,” M.S. Thesis, National Central University, 2007.
8. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of a Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, 2009, pp. 515-524.
9. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Pre-Oxidation and Environmental Aging on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell (SOFC) Sealing Glass with Metallic Interconnect,” Journal of Power Sources, Vol. 184, 2008, pp. 238-244.
10. V. A. Haanappel, V. Shemet, I. C. Vinke, and W. J. Quadakkers, “A Novel Method to Evaluate the Suitability of Glass Sealant-Alloy Combinations under SOFC Stack Conditions,” Journal of Power Sources, Vol. 141, 2005, pp. 102-107.
11. F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, P. Asinari, and A. Chrysanthou, “Characterization and Performance of Glass-Ceramic Sealant to Join Metallic Interconnects to YSZ and Anode-Supported-Electrolyte in Planar SOFCs,” Journal of the European Ceramic Society, Vol. 28, 2008, pp. 2521-2527.
12. E.V. Stephensa, J.S. Vetranob, B.J. Koeppela, Y. Choua, X. Suna, and M.A. Khaleela, “Experimental Characterization of Glass-Ceramic Seal Properties and their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models,” Journal of Power Sources, Vol. 193, 2009, pp. 625-631.
13. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Aluminizing of Cr-Containing Ferritic Alloys on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell Sealing Glass,” Journal of Power Sources, Vol. 185, 2008, pp. 1001-1008.
14. I. W. Donald, “Preparation, Properties and Chemistry of Glass- and Glass-Ceramic-to-Metal Seals and Coatings,” Journal of Materials Science, Vol. 28, 1993, pp. 2841-2886.
15. F. Smeacetto, M. Salvo, M. Ferraris, J. Cho, and A.R. Boccaccini, “Glass-Ceramic Seal to Join Crofer 22 APU Alloy to YSZ Ceramic in Planar SOFCs,” Journal of the European Ceramic Society, Vol. 28, 2008, pp. 61-68.
16. Y.-T. Chiou, private communication, 2010.
17. H.-T. Chang, C.-K. Lin, and C.-K. Liu, “High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 189, 2009, pp. 1093-1099.
18. H.-T. Chang, C.-K. Lin, and C.-K. Liu, “Effects of Crystallization on the High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 195, 2010, pp. 3159-3165.
19. H.-T. Chang, “High Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Ph.D. Thesis, National Central University, 2010.
20. C.-K. Liu, T.-Y. Yung, S.-H. Wu, and K.-F. Lin, “Study on SiO2-B2O3-Al2O3-BaO Glass System for SOFC Applications,” Proceedings of the MRS_Taiwan Annual Meeting 2007, 2007 (CD-ROM). (in Chinese)
21. J.-W. Tian, “Analysis of Thermal Stresses and Mechanical Properties for the Components of Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2009.
22. W. Liu, X. Sun, and M. A. Khaleel, “Predicting Young’s Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing,” Journal of Power Sources, Vol. 185, 2008, pp. 1193-1200.
23. M. Palcut, L. Mikkelsen, K. Neufeld, M. Chen, R. Knibbe, and P. V. Hendriksen, “Corrosion Stability of Ferritic Stainless Steels for Solid Oxide Electrolyser Cell Interconnects,” Corrosion Science, 2010, doi: 10.1016/j.corsci.2010.06.006.
指導教授 林志光(Chih-kuang Lin) 審核日期 2010-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明