博碩士論文 943403048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.147.72.34
姓名 張秀桃(Hsiu-Tao Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 固態氧化物燃料電池封裝用玻璃陶瓷高溫機械性質
(High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對固態氧化物燃料電池封裝用SiO2-B2O3-Al2O3-BaO玻璃(代號GC-9)之高溫機械性質進行分析。玻璃原料通常熔融形成玻璃塊材,但由於玻璃塊材加工不易且加工成本高,所以實際應用於固態氧化物燃料電池中,通常使用玻璃粉末燒結的方式進行封裝。因此,本文除探討GC-9玻璃塊材隨溫度改變之機械性質與行為外,亦利用粉末燒結之方式研究其高溫的機械性質與行為。此外,固態氧化物燃料電池封裝玻璃在系統組裝或高溫的操作過程中會造成結晶化,進而改變原來材料的特性,所以本研究亦利用不同熱處理條件以加速GC-9封裝玻璃產生結晶相,探討結晶後GC-9玻璃塊材與粉末燒結試片之機械性質變化,並評估其應用於中溫型平板式固態氧化物燃料電池的適用性。
研究結果顯示裂縫癒合效應與應力鬆弛的作用為改變GC-9玻璃機械性質的主要原因。裂縫癒合效應主要是因為玻璃相隨著溫度上升黏度降低,因此降低缺陷附近應力集中現象,進而提高材料強度。當測試溫度高於玻璃轉化溫度後,應力鬆弛效應顯著,受外力作用之GC-9玻璃塊材無法累積足夠的應變能量產生斷裂。另外,時效處理後之GC-9玻璃塊材除了產生結晶相外,其原本存在玻璃系統裡面的玻璃相亦受到影響而改變,結晶相與殘留玻璃相均會影響熱性質與機械性質。玻璃轉化溫度與玻璃軟化溫度為GC-9玻璃之高溫機械性質重要的指標,當測試溫度在接近玻璃轉化溫度,材料會由脆性行為轉為延性行為,在高於玻璃轉化溫度或靠近玻璃軟化溫度,材料會出現明顯的應力鬆弛的行為。時效過後玻璃塊材之玻璃轉化溫度下降而玻璃軟化溫度上升,因此,時效處理後之GC-9玻璃塊材由於結晶相的影響,在低溫有較佳的強度與剛性,但當溫度高於玻璃轉化溫度時,卻有更顯著的裂縫癒合效應與應力鬆弛現象。
粉末燒結之GC-9玻璃由於結晶行為與玻璃塊材不同,所產生的結晶相與結晶程度亦不相同,加上此種製作方式會在材料內部殘留較多的孔洞,因此,其機械性質與行為亦不同於GC-9玻璃塊材。粉末燒結之GC-9玻璃比GC-9玻璃塊材在室溫有較低的強度,但其結晶程度較高,因此在高溫下反而有較佳的強度。此外,裂縫癒合效應與應力鬆弛現象亦發生在粉末燒結之GC-9玻璃,且從機械試驗之力量與位移關係圖中,可以判斷粉末燒結之GC-9玻璃及時效處理後之粉末燒結GC-9玻璃從脆性轉為延性的轉化溫度,在轉化溫度以下,材料呈現脆性行為,在轉化溫度之上,粉末燒結之GC-9玻璃同樣出現應力鬆弛現象進而失去剛性。
摘要(英) The high-temperature mechanical properties of a newly developed silicate-based glass sealant, designated as GC-9, have been studied for use in planar solid oxide fuel cell (pSOFC). Both bulk and sintered GC-9 glass specimens were made for studying the high-temperature mechanical behavior. In order to investigate effects of crystallization, the as-cast bulk GC-9 glass was treated at 900oC for 3 h and the sintered GC-9 glass was aged at 750oC for 100 h. Not only crystalline phases were formed but the residual glass was also changed in the aged bulk GC-9 glass after heat treatment. On the other hand, a different fabrication process generated pores and different crystalline phases in the sintered GC-9 glass from the bulk one. Such different microstructure and crystalline phases resulted in different high-temperature mechanical properties. Four-point-bending tests were conducted at 25oC, 550oC, 600oC, 650oC, 700oC, and 750oC to investigate the variation of flexural strength and elastic modulus with temperature for both the non-aged and aged bulk GC-9 glass. For the non-aged and aged, sintered GC-9 glass, ring-on-ring tests were carried out at 25oC, 650oC, 700oC, 750oC, and 800oC to investigate the variation of flexural strength and elastic modulus with temperature. Weibull statistic analysis was applied to describe the fracture strength data.
The glass transition temperature (Tg) of the bulk glass is reduced but the softening temperature (Ts) is increased by heat treatment at 900oC for 3 h. From the force-displacement curves of the sintered GC-9 glass, the transition temperature from brittle to ductile behavior was estimated. The inferred Tg of the non-aged, sintered GC-9 glass was between 700oC and 750oC, while that of the aged one was between 750oC and 800oC. The Tg was an index for distinguishing the influence of crystalline phases and residual glass on the mechanical properties. The aged bulk GC-9 glass exhibited a greater flexural strength and Young’s modulus than did the non-aged bulk one at temperature below 650oC due to existence of the crystalline phases. At temperature of 700oC and 750oC, a greater extent of stress relaxation was found in the aged bulk GC-9 glass such that its strength and stiffness were much lower than those of the non-aged bulk one. However, the sintered GC-9 glass with pores and crystalline phases showed a flexural strength lower than the bulk one at temperature of 650oC and below. Due to a greater extent of crystallization, the flexural strength and stiffness of the sintered GC-9 glass were greater than those of the bulk one at 700oC and 800oC.
關鍵字(中) ★ 玻璃陶瓷
★ 封裝材料
★ 固態氧化物燃料電池
關鍵字(英) ★ solid oxide fuel cell
★ sealant
★ glass ceramic
論文目次 LIST OF TABLES VIII
LIST OF FIGURES IX
1. INTRODUCTION 1
1.1 Background 1
1.2 Literature Review 3
1.3 Purpose and Scope 9
2. EXPERIMENTAL PROCEDURES 12
2.1 Material and Specimen Preparation 12
2.1.1 Bulk GC-9 glass 12
2.1.2 Sintered GC-9 glass 13
2.2 Thermal Properties and Microstructural Analysis 14
2.3 Four Point Bending Test 14
2.4 Ring-on-Ring Test 15
2.5 Weibull Statistic Analysis 17
3. RESULTS AND DISCUSSION 19
3.1 Microstructure 19
3.2 Thermal Properties 21
3.3 Influence of Environmental Temperature on Mechanical Behavior 22
3.3.1 Bulk GC-9 glass 22
3.3.2 Sintered GC-9 glass 26
3.4 Fracture Strength and Weibull Statistic Analysis 28
3.4.1 Bulk GC-9 glass 29
3.4.2 Sintered GC-9 glass 33
3.5 Influence of Environmental Temperature on Young’s Modulus 35
3.5.1 Bulk GC-9 glass 36
3.5.2 Sintered GC-9 glass 37
3.6 Comparison of GC-9 Glass with Commercial G-18 Glass 38
3.7 Failure Analysis 39
3.7.1 Bulk GC-9 glass 40
3.7.2 Sintered GC-9 glass 44
4. CONCLUSIONS 49
REFERENCES 52
TABLES 59
FIGURES 62
PUBLICATIONS 102
參考文獻 1. S. C. Singhal, “Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications,” Solid State Ionics, Vol. 152-153, 2002, pp. 405-410.
2. N. Q. Minh, “Solid Oxide Fuel Cell Technology-Features and Applications,” Solid State Ionics, Vol. 174, 2004, pp. 271-277.
3. A. Weber and E. Ivers-Tiffée, “Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications,” Journal of Power Sources, Vol. 127, 2004, pp. 273-283.
4. H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, “Recent Developments in Solid Oxide Fuel Cell Materials,” Fuel Cells, Vol. 1, 2001, pp. 117-131.
5. T.-L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Hie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionic, Vol. 148, 2002, pp. 513-519.
6. S. Fontana, S. Chevalier, and G. Gaboche, “Metallic Interconnects for Solid Oxide Fuel Cell: Effect of Water Vapour on Oxidation Resistance of Differently Coated Alloys,” Journal of Power Sources, Vol. 193, 2009, pp. 136-145.
7. J. W. Fergus, “Metallic Interconnects for Solid Oxide Fuel Cells,” Materials Science and Engineering A, Vol. 397, 2005, pp. 271-283.
8. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, 2007, pp. 3465-3476.
9. I. W. Donald, “Preparation, Properties and Chemistry of Glass- and Glass-Ceramic-to-Metal Seals and Coatings.” Journal of Materials Science, Vol. 28, 1993, pp. 2841-2886.
10. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, 2005, pp. 46-57.
11. K. S. Weil, “The State-of-the-Art in Sealing Technology for Solid Oxide Fuel Cells,” JOM, Vol. 58, 2006, pp. 37-44.
12. N. Govindaraju, W. N. Liu, X. Sun, P. Singh, and R. N. Singh, “A Modeling Study on the Thermomechanical Behavior of Glass-Ceramic and Self-Healing Glass Seals at Elevated Temperatures,” Journal of Power Sources, Vol. 190, 2009, pp. 476-484.
13. R. N. Singh, “Sealing Technology for Solid Oxide Fuel Cells (SOFC),” International of Applied Ceramic Technology, Vol. 4, 2007, pp. 134-144.
14. K. L. Ley, M. Krumpelt, R. Kumar, J. H. Meiser, and I. Bloom, “Glass-Ceramic Sealants for Solid Oxide Fuel Cells: Part I. Physical Properties,” Journal of Materials Research, Vol. 11, 1996, pp. 1489-1493.
15. C. S. Montross, H. Yokokawa, and M. Dokiya, “Thermal Stresses in Planar Solid Oxide Fuel Cells Due to Thermal Expansion Differences,” British Ceramic Transactions, Vol. 101, 2002, pp. 85-93.
16. A. Atkinson and B. Sun, “Residual Stress and Thermal Cycling of Planar Solid Oxide Fuel Cells,” Materials Science and Technology, Vol. 23, 2007, pp. 1135-1143.
17. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, 2007, pp. 238-251.
18. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, 2009, pp. 515-524.
19. K. D. Meinhardt, D.-S. Kim, Y.-S. Chou, and K. S. Weil, “Synthesis and Properties of a Barium Aluminosilicate Solid Oxide Fuel Cell Glass-Ceramic Sealant,” Journal of Power Sources, Vol. 182, 2008, pp. 188-196.
20. W. Liu, X. Sun, and M. A. Khaleel, “Predicting Young’s Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing,” Journal of Power Sources, Vol. 185, 2008, pp. 1193-1200.
21. P. H. Larsen, F. W. Poulsen, and R. W. Berg, “The Influence of SiO2 Addition to 2MgO-Al2O3-3.3P2O5 Glass,” Journal of Non-Crystalline Solids, Vol. 244, 1999, pp. 16-24.
22. K. Eichler, G. Solow, P. Otschik, and W. Schaffrath, “BAS (BaO・Al2O3・SiO2)-Glasses for High Temperature Applications,” Journal of the European Ceramic Society, Vol. 19, 1999, pp. 1101-1104.
23. C. Lara, M. J. Pascual, and A. Durán, “Glass-Forming Ability, Sinterability and Thermal Properties in the Systems RO-BaO-SiO2 (R=Mg, Zn),” Journal of Non-Crystalline Solids, Vol. 348, 2004, pp. 149-155.
24. N. Lahl, K. Singh, L. Singheiser, K. Hilpert, and D. Bahadur, “Crystallisation Kinetics in AO-Al2O3-SiO2-B2O3 Glasses (A=Ba, Ca, Mg),” Journal of Materials Science, Vol. 35, 2000, pp. 3089-3096.
25. S.-B. Sohn and S.-Y. Choi, “Crystallization Behavior in the Glass System MgO-Al2O3-SiO2: Influence of CeO2 Addition,” Journal of Non-Crystalline Solids, Vol. 282, 2001, pp. 221-227.
26. S.-B. Sohn, S.-Y. Choi, G.-H. Kim, H.-S. Song, and G.-D. Kim, “Stable Sealing Glass for Planar Solid Oxide Fuel Cell,” Journal of Non-Crystalline Solids, Vol. 297, 2002, pp. 103-112.
27. S.-B. Sohn, S.-Y. Choi, G.-H. Kim, H.-S. Song, and G.-D. Kim, “Suitable Glass-Ceramic Sealant for Planar Solid Oxide Fuel Cells,” Journal of the American Ceramic Society, Vol. 87, 2004, pp. 254-260.
28. R. Zheng, S. R. Wang, H. W. Nie, and T.-L. Wen, “SiO2-CaO-B2O3-Al2O3 Ceramic Glaze as Sealant for Planar ITSOFC, Journal of Power Sources, Vol. 128, 2004, pp. 165-172.
29. M. J. Pascual, A. Guillet, and A. Durán, “Optimization of Glass-Ceramic Sealant Compositions in the System MgO-BaO-SiO2 for Solid Oxide Fuel Cells (SOFC),” Journal of Power Sources, Vol. 169, 2007, pp. 40-46.
30. K. A. Nielsen, M. Solvang, S. B. L. Nielsen, A. R. Dinesen, D. Beeaff, and P. H. Larsen, “Glass Composite Seals for SOFC Application,” Journal of the European Ceramic Society, Vol. 27, 2007, pp. 1817-1822.
31. Y.-S. Chou, J. W. Stevenson, and R. N. Gow, “Novel Alkaline Earth Silicate Sealing Glass for SOFC: Part I. the Effect of Nickel Oxide on the Thermal and Mechanical Properties,” Journal of Power Sources, Vol. 168, 2007, pp. 426-433.
32. R. N. Singh, “High-Temperature Seals for Solid Oxide Fuel Cells (SOFC),” Journal of Materials Engineering and Performance, Vol. 15, 2006, pp. 422-426.
33. T. Jin and K. Lu, “Thermal Stability of a New Solid Oxide Fuel/Electrolyzer Cell Seal Glass,” Journal of Power Sources, Vol. 195, 2010, pp. 195-203.
34. P. H. Larsen and P. F. James, “Chemical Stabilility of MgO/CaO/Cr2O3/Al2O3/B2O3-Phosphate Glasses in Solid Oxide Fuel Cell Environment,” Journal of Materials Science, Vol. 33, 1998, pp. 2499-2507.
35. N. Lahl, D. Bahadur, K. Singh, L. Singheiser, and K. Hilpert, “Chemical Interactions Between Aluminosilicate Base Sealants and the Components on the Anode Side of Solid Oxide Fuel Cells,” Journal of the Electrochemical Society, Vol. 149, 2002, pp. A607-A614.
36. D. Bahadur, N. Lahl, K. Singh, L. Singheiser, and K. Hilpert, “Influence of Nucleating Agents on the Chemical Interaction of MgO-Al2O3-SiO2-B2O3 Glass Sealants with Components of SOFCs,” Journal of the Electrochemical Society, Vol. 151, 2004, pp. A558-A562.
37. Z. Yang, G. Xia, K. D. Meinhardt, K. S. Weil, and J. W. Stevenson, “Chemical Stability of Glass Seal Interfaces in Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Materials Engineering and Performance, Vol. 13, 2004, pp. 327-334.
38. V. A. C. Haanappel, V. Shemet, S. M. Gross, Th. Koppitz, N. H. Menzler, M. Zahid, and W. J. Quadakkers, “Behaviour of Various Glass-Ceramic Sealants with Ferritic Steels under Simulated SOFC Stack Conditions,” Journal of Power Sources, Vol. 150, 2005, pp. 86-100.
39. V. A. C. Haanappel, V. Shemet, I. C. Vinke, and W. J. Quadakkers, “A Novel Method to Evaluate the Suitability of Glass Sealant-Alloy Combinations under SOFC Stack Conditions,” Journal of Power Sources, Vol. 141, 2005, pp. 102-107.
40. N. H. Menzler, D. Sehold, M. Zahid, S. M. Gross, and T. Koppitz, “Interaction of Metallic SOFC Interconnect Materials with Glass-Ceramic Sealant in Various Atmospheres,” Journal of Power Sources, Vol. 152, 2005, pp. 156-167.
41. Y.-S. Chou, J. W. Stevenson, and R. N. Gow, “Novel Alkaline Earth Silicate Sealing Glass for SOFC: Part II. Sealing and Interfacial Microstructure,” Journal of Power Sources, Vol. 170, 2007, pp. 395-400.
42. F. Smeacetto, M. Salvo, M. Ferraris, J. Cho, and A. R. Boccaccini, “Glass-Ceramic Seal to Join Crofer 22 APU Alloy to YSZ Ceramic in Planar SOFCs,” Journal of the European Ceramic Society, Vol. 28, 2008, pp. 61-68.
43. F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, and P. Asinari, “Glass and Composite Seals for the Joining of YSZ to Metallic Interconnect in Solid Oxide Fuel Cells,” Journal of the European Ceramic Society, Vol. 28, 2008, pp. 611-616.
44. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Materials Engineering and Performance, Vol. 13, 2004, pp. 316-326.
45. S. R, Choi and N. P. Bansal, “Mechanical Properties of SOFC Seal Glass Composites,” Ceramic Engineering and Science Proceedings, Vol. 26, 2005, pp. 275-283.
46. J. Malzbender, J. Mönch, R. W. Steinbrech, T. Koppitz, S. M. Gross, and J. Remmel, “Symmetric Shear Test of Glass-Ceramic Sealants at SOFC Operation Temperature,” Journal of Materials Sciences, Vol. 42, 2007, pp. 6297-6301.
47. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Pre-Oxidation and Environmental Aging on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell (SOFC) Sealing Glass with Metallic Interconnect,” Journal of Power Sources, Vol. 184, 2008, pp. 238-244.
48. E. V. Stephens, J. S. Vetrano, B. J. Koeppel, Y. Chou, X. Sun, and M. A. Khaleel, “Experimental Characterization of Glass-Ceramic Seal Properties and Their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models,” Journal of Power Sources, Vol. 193, 2009, pp. 625-631.
49. J. Milhans, M. Khaleel, X. Sun, M. Tehrani, M. Al-Haik, and H. Garmestani, “Creep Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal G18,” Journal of Power Sources, Vol, 195, 2010, pp. 3631-3635.
50. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Effect of La Addition on the Thermal and Crystalline Properties of SiO2-B2O3-Al2O3-BaO Glasses,” Proceedings of the Annual Conference of the Chinese Ceramic Society, 2007 (CD-ROM). (in Chinese)
51. C.-K. Liu, T.-Y. Yung, S.-H. Wu, and K.-F. Lin, “Study on a SiO2-B2O3-Al2O3-BaO Glass System for SOFC Applications,” Proceedings of the MRS_Taiwan Annual Meeting, 2007 (CD-ROM). (in Chinese)
52. C.-K. Liu, T.-Y. Yung, K.-F. Lin, “Isothermal Crystallization Properties of SiO2-B2O3-Al2O3-BaO Glass,” Proceedings of the Annual Conference of the Chinese Ceramic Society, 2008 (CD-ROM). (in Chinese)
53. “Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes Boiling Water,” ASTM Standard C20, ASTM International, West Conshohocken, PA, USA, 2010.
54. “Standard Test Method for Flexural Strength of Advanced Ceramics at Elevated Temperatures,” ASTM Standard C1211, ASTM International, West Conshohocken, PA, USA, 2008.
55. R. C. Hibbeler, Statics and Mechanics of Materials, SI ed., Prentice Hall, Inc., Singapore, 2004.
56. “Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature,” ASTM Standard C1499, ASTM International, West Conshohocken, PA, USA, 2008.
57. D. W. Richerson, Modern Ceramic Engineering, 2nd ed., Marcel Dekker, Inc., New York, USA, 1992.
58. Z. Strnad, Glass-Ceramic Materials, Elsevier Science Publishing Company, Inc., New York, USA, 1986.
59. D. G. Burnett and R. W. Douglas, “Immiscibility, Nucleation, and Crystal Growth in the Soda-Baria-Silica System,” Discussions of the Faraday Society, Vol. 50, 1970, pp. 200-205.
60. D. G. Burnett and R. W. Douglas, “Nucleation and Crystallisation in the Soda-Baria-Silica System,” Physics and Chemistry of Glasses, Vol. 12, 1971, pp. 117-124.
61. J. E. Shelby, Introduction to Glass Science and Technology, 2nd ed., The Royal Society of Chemistry, New York, USA, 2005.
62. R. Hill and P. Gilbert, “High-Temperature Dynamic Mechanical Thermal Analysis of a Lithium Zinc Silicate Glass-Ceramic,” Journal of the American Ceramic Society, Vol. 76, 1993, pp. 417-425.
63. T. Rouxel and J.-C. Sangleboeuf, “The Brittle to Ductile Transition in a Soda-Lime-Silica Glass,” Journal of Non-Crystalline Solids, Vol. 271, 2000, pp. 224-235.
64. B. N. Nguyen, B. J. Koeppel, S. Ahzi, M. A. Khaleel, and P. Singh, “Crack Growth in Solid Oxide Fuel Cell Materials: From Discrete to Continuum Damage Modeling,” Journal of the American Ceramic Society, Vol. 89, 2006, pp. 1358-1368.
65. P. Hrma, W. T. Han, and A. R. Cooper, “Thermal Healing of Cracks in Glass,” Journal of Non-Crystalline Solids, Vol. 102, 1988, pp. 88-94.
66. K. O. Kese, Z. C. Li, and B. Bergman, “Contact Residual Stress Relaxation in Soda-Lime Glass Part II. Aspects Relating to Strength Recovery,” Journal of the European Ceramic Society, Vol. 26, 2006, pp. 1013-1022.
67. M. Ono, W. Nakao, K. Takahashi, and K. Ando, “Strength Recovery of Machined Al2O3/SiC Composite Ceramics by Crack Healing,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 30, 2007, pp. 1140-1148.
68. D. C. Cassidy and N. A. Gjostein, “Capillarity-Induced Smoothing of Glass Surfaces by Viscous Flow,” Journal of the American Ceramic Society, Vol. 53, 1969, pp. 161-168.
69. R. W. Davidge, Mechanical Behaviour of Ceramics, Cambridge University Press, New York, USA, 1979.
70. “Standard Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics,” ASTM Standard C1322, ASTM International, West Conshohocken, PA, USA, 2005.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2010-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明