博碩士論文 973206015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.138.174.95
姓名 陳玫佐(Mei-cho Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 生質沼氣發酵特性之研究
(Fermentation Characteristics of Biogas)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著全球人口的增加及產業的快速進步,對能源的需求與日俱增。利用有機廢棄物如牛糞、農業廢棄物和下水污泥經由厭氧暗發酵程序,可從中獲得生質能源,例如生質氣體。為提高厭氧程序中生質氣體的產率,可提供其酵槽發酵物質與污泥共發酵。本研究探討利用單一及混合人工基質探討有機廢棄物經由厭氧發酵程序之能源特性。
預備實驗中以牛糞及都市下水道污泥等有機廢棄物,實施高溫厭氧暗發酵程序,應用田口實驗設計法篩選最大發酵影響因子;再深入探討於相同發酵條件下,人工基質葡萄醣、酪蛋白、亞麻油酸與牛奶厭氧代謝分解產出氫氣與甲烷情形。本研究人工基質高溫厭氧暗發酵中,氫轉換率分別為葡萄糖3%、酪蛋白0.1%、亞麻油酸0.4%及牛奶0.9%;甲烷轉換率則為酪蛋白2%、亞麻油酸0.7%及牛奶24%。高負荷亞麻油酸會抑制甲烷產出率。本研究所得之結果,可提供有機廢棄物經厭氧發酵之回收生質能研究做參考。
摘要(英) The increasing concern over the energy resource depletion, pollution and global warming has prompted the interest in renewable bioenergy. The anaerobic digestion of organic solid wastes, such as cattle slurry, agricultural wastes, and wastewater treatment sludge, has been well practiced. Co-digestion could become an attractive alternative to traditional single-substrate based digestion for the production of biogas. To explore the digestion characteristics of organic-wastes-to-energy, this study investigated the digestion of single substrate (i.e., sugar, protein, and lipids, respectively), and a mixed substrate (i.e., milk).
In the preliminary work, the process-governing factors (i.e., fermentation temperature, substrate concentration, initial pH values, and concentrations of NH4Cl, KH2PO4, and NaCl) were screened by experiments with an experimental factorial design of Taguchi method, using sewage treatment sludge as starting substrates and cow dung as inoculum. Based on the results of the preliminary work, the fermentation characteristics for hydrogen and methane production was investigated using glucose, casein, linoleic acids, and milk as substrate, respectively. The results indicate that, in hydrogen production, the conversion rate for hydrogen (i.e., milligram hydrogen per gram of substrate) was found to be approximately 3% for glucose substrate, 0.1% for casein, 0.4% for linoleic acids, and 0.9% for mixed substrate, milk. On the other hand, in methane production, the conversion rate for methane (i.e., milligram methane per gram of substrate) was found to be approximately 2% for casein, 0.7% for linoleic acids, and 24% for milk. In the case of linoleic acids substrate, it appeared that the methane production had undergone inhibition by the substrate itself at higher concentration. The results of this study may be of interest to researchers attempting to recovery bioenergy by anaerobic fermentation from mixed organic wastes.
關鍵字(中) ★ 共發酵
★ 生質氣體
★ 生質能源
★ 厭氧
★ 甲烷
★ 氫氣
★ 田口實驗設計法
關鍵字(英) ★ biogas
★ Bioenergy
★ anaerobic
★ methane
★ hydrogen
★ Taguchi method
★ co-digestion
論文目次 摘要 ............................................................................................................. I
Abstract ......................................................................................................II
目錄 ...........................................................................................................III
圖目錄 ...................................................................................................... VI
表目錄 ....................................................................................................VIII
第一章前言 ...............................................................................................1
1.1 研究緣起 .............................................................................................. 1
1.2 研究範圍與目的 .................................................................................. 2
1.3 研究架構 .............................................................................................. 2
第二章文獻回顧 .......................................................................................4
2.1 下水污泥特性及處置現況 .................................................................. 4
2.2 田口實驗方法 ...................................................................................... 4
2.3 厭氧暗發酵 .......................................................................................... 5
2.3.1 碳水化合物代謝 ....................................................................... 8
2.3.2 蛋白質代謝 ............................................................................. 10
2.3.3 脂質代謝 ..................................................................................11
2.4 生質氫氣 ............................................................................................ 13
2.4.1 產出方式 ................................................................................. 13
2.4.1.1 生質氫氣產出方式比較 ...................................................... 14
2.4.1.2 暗發酵 .................................................................................. 15
2.5 生質甲烷 ............................................................................................ 19
第三章實驗方法 .....................................................................................21
3.1 實驗流程 ............................................................................................ 21
3.1.1 預備實驗-影響發酵因子篩選 ............................................... 22
3.1.1.1 田口實驗計畫法 .................................................................. 22
3.1.1.2 下水污泥來源及前處理 ...................................................... 24
3.1.1.3 植種來源及前處理 .............................................................. 25
3.1.1.4 厭氧暗發酵系統 .................................................................. 26
3.1.1.5 統計分析 .............................................................................. 27
3.1.2 基質分解與生質能源回收實驗 ............................................. 28
3.2實驗分析項目與設備 ......................................................................... 32
3.2.1實驗分析項目 .......................................................................... 32
3.2.2實驗儀器與試藥 ...................................................................... 33
第四章結果與討論 ................................................................................35
4.1田口實驗設計 ..................................................................................... 35
4.2預備實驗統計分析 ............................................................................. 40
4.2.1預測最大模式中變數的數目 .................................................. 40
4.2.2變數加入的順序 ...................................................................... 40
4.2.3 迴歸模式的設定及選擇 ......................................................... 41
4.3. 人工基質厭氧發酵 ........................................................................... 45
4.3.1 碳水化合物之葡萄糖厭氧發酵 ............................................. 45
4.3.1.1不同葡萄糖基質負荷之氣體產出比較 ............................... 45
4.3.1.2不同葡萄糖基質負荷之液體產出比較 ............................... 46
4.3.2 酪蛋白厭氧發酵 ..................................................................... 48
4.3.2.1不同酪蛋白基質負荷之氣體產出比較 ............................... 48
4.3.2.2不同酪蛋白基質負荷之液體產出比較 ............................... 50
4.3.3 脂肪酸-亞麻油酸厭氧發酵 ................................................... 51
4.3.3.1不同亞麻油酸基質負荷之氣體產出 ................................... 51
4.3.3.2不同亞麻油酸基質負荷之液體產出 ................................... 53
4.3.4 混合基質-牛奶厭氧發酵 ....................................................... 54
4.3.4.1不同牛奶基質負荷之氣體產出 ........................................... 54
4.3.4.2不同牛奶基質負荷之液體產出 ........................................... 56
4.3.5 生質氣體及液體產出綜合比較 ............................................. 57
第五章結論與建議 ......................................................................................... 64
5.1 結論 .................................................................................................... 64
5.2 建議 .................................................................................................... 65
參考文獻 ........................................................................................................... 66
附錄 ................................................................................................................... 73
參考文獻 Alosta, H., Lalman, J. A., Jing, D. and Bellmer, D. (2004). Glucose fermentation in the presence of linoleic, oleic and stearic acids by a mixed culture. Journal of Chemical Technology and Biotechnology 79(4): 327-334.
Angelidaki, I. and Ahring, B. K. (1997). Co-digestion of olive oil mill wastewaters with manure, household waste or sewage sludge. 8: 221-226.
Antonopoulou, G., Gavala, H. N., Skiadas, L. V., Angelopoulos, K. and Lyberatos, G. (2008). Blofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresource Technology 99(1): 110-119.
Appels, L., Baeyens, J., Degrève, J. and Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science 34(6): 755-781.
Barker, T. B. (1986). Quality Engineering by Design:Taguchi's Philosophy. Quality Progress.
Bauer, A., Bösch, P., Friedl, A. and Amon, T. (2009). Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. Journal of Biotechnology 142(1): 50-55.
Boone, D. R. (1982). Terminal reactions in the anaerobic digestion of animal waste. Applied Environment Microbiology 43: 57-64.
Cai, M. L., Liu, J. X. and Wei, Y. S. (2004). Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environmental Science & Technology 38(11): 3195-3202.
Chen, C. C., Lin, C. Y. and Chang, J. S. (2001). Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Applied Microbiology and Biotechnology 57(1-2): 56-64.
Chen, W. H., Chen, S. Y., Khanal, S. K. and Sung, S. W. (2006). Kinetic study of biological hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy 31(15): 2170-2178.
Chowdhury, N., Lalman, J. A., Seth, R. and Ndegwa, P. (2007). Biohydrogen production by mesophilic anaerobic fermentation of glucose in the presence of linoleic acid. Journal of Environmental Engineering-Asce 133(12): 1145-1152.
Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.-A. and Steyer, J.-P. (2006). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology In Press, Corrected Proof.
Das, D. and Veziroglu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26(1): 13-28.
Demeyer, D. I. and Hendrickx, H. K. (1967). The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. Biochim. Biochim. Biophys. 137: 484-497.
Demirbas, M. F. and Balat, M. (2006). Recent advances on the production and utilization trends of bio-fuels: A global perspective. Energy Conversion and Management 47(15-16): 2371-2381.
Fountoulakis, M. S., Drakopoulou, S., Terzakis, S., Georgaki, E. and Manios, T. (2008). Potential for methane production from typical Mediterranean agro-industrial by-products. Biomass and Bioenergy 32(2): 155-161.
Gujer, W. and Zehnder, A. J. B. (1983). Conversion processes in anaerobic bacteria. War. Sci. Tech 15: 127-167.
Guo, L., Li, X.-M., Bo, X., Yang, Q., Zeng, G.-M., Liao, D.-x. and Liu, J.-J. (2008a). Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresource Technology 99(9): 3651-3658.
Guo, W. Q., Ren, N. Q., Wang, X. J., Xiang, W. S., Meng, Z. H., Ding, J., Qu, Y. Y. and Zhang, L. S. (2008b). Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. International Journal of Hydrogen Energy 33(19): 4981-4988.
Hallenbeck, P. C. and Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy 27(11-12): 1185-1193.
Hallenbeck, P. C. and Ghosh, D. (2009). Advances in fermentative biohydrogen production: the way forward? Trends in Biotechnology 27(5): 287-297.
Hanaki, K., Matsuo, T. and Nagase, M. (1981). Mechanism of inhibition caused by long chain fatty acids in anaerobic digestion. Biotech. Bioeng. 12: 1591-1610.
Hawkes, F. R., Dinsdale, R., Hawkes, D. L. and Hussy, I. (2002). Sustainable fermentative hydrogen production: challenges for process optimisation. International Journal of Hydrogen Energy 27(11-12): 1339-1347.
Jeong, T.-Y., Cha, G.-C., Yoo, I.-K. and Kim, D.-J. (2007). Hydrogen production from waste activated sludge by using separation membrane acid fermentation reactor and photosynthetic reactor. International Journal of Hydrogen Energy 32(5): 525-530.
Kapdan, I. K. and Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology 38(5): 569-582.
Kleinbaum, D. G., Kupper, L. L., Nizam, A. and Muller, K. E. (2008). Applied Regression Analysis and Other Multivariable Methods.
kolumbus, F. (2007).Basic Information on Biogas.
Koster, I. W. and Cramer, A. (1987). Inhibition of methanogenesis from acetate in granular sludge by long chain fatty acids. Appl. Env. Microbiol. 53(2): 403-409.
Koster, I. W. and Lettinga, G. (1988). Anaerobic digestion at extreme ammonia concentrations. Biological Wastes 25(1): 51-59.
Lalman, J. and Bagley, D. M. (2002). Effects of C18 long chain fatty acids on glucose, butyrate and hydrogen degradation. Water Research 36(13): 3307-3313.
Lalman, J. A. (2000).Anaerobic Degradation of Linoleic (C18:2), Oleic (C18:1) and Stearic (C18:0) Acids and their Inhibitory Effects on Acidogens, Acetogens and Methanogens. In Civil Engineering, Vol. Doctor of Philosophy, 1-202 Canada: Toronto.
Lalman, J. A., Alosta, H., Bejankiwar, R. and Bellmer, D. (2003). Kinetics of glucose fermentation by a mixed culture in the presence of linoleic, oleic, and stearic acid. Environmental Technology 24(12): 1471-1478.
Lalman, J. A. and Bagley, D. M. (2000). Anaerobic degradation and inhibitory effects of linoleic acid. Water Research 34(17): 4220-4228.
Lalman, J. A. and Bagley, D. M. (2001). Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Research 35(12): 2975-2983.
Lehninger, A. L., Nelson, D. L. and Cos, M. M. (1999). Principles of Biochemistr3. N.Y.: W.H. Freernan & Sons.
Levin, D. B., Pitt, L. and Love, M. (2004). Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy 29(2): 173-185.
Li, J., Ren, N., Li, B., Qin, Z. and He, J. (2008). Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture. Bioresource Technology 99(14): 6528-6537.
Lin, C.-Y., Wu, C.-C. and Hung, C.-H. (2008). Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures. International Journal of Hydrogen Energy 33(1): 43-50.
Liu, G. Z. and Shen, J. Q. (2004). Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. Journal of Bioscience and Bioengineering 98(4): 251-256.
Lo, Y.-C., Chen, W.-M., Hung, C.-H., Chen, S.-D. and Chang, J.-S. (2008). Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies. Water Research 42(4-5): 827-842.
Manish, S. and Banerjee, R. (2008). Comparison of biohydrogen production processes. International Journal of Hydrogen Energy 33(1): 279-286.
Mu, Y., Wang, G. and Yu, H. Q. (2006). Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme Microb. Technol. 38: 905-913.
Nallathambi Gunaseelan, V. (1997). Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy 13(1-2): 83-114.
Nandi, R. and Sengupta, S. (1998). Microbial production of hydrogen: an overview. Crit Rev Microbiol 24: 61-84.
O-Thong, S., Prasertsan, P., Karakashev, D. and Angelidaki, I. (2008). Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. International Journal of Hydrogen Energy 33(4): 1204-1214.
Parkin, G., Speece, R., Yang, C. and Kocher, W. (1983). Response of methane fermentation systems to industrial toxicants. Journal of WPCF 55(1): 44-53.
Pavlostathis, S. G. and Giraldo-Gomez, E. (1991). kinetics of anaerobic treatment. War. Sci. Tech 24(8): 35-59.
Perle, M., Kimchie, S. and Shelef, G. (1995). Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Research 29(6): 1549-1554.
Petruy, R. and Lettinga, G. (1997). Digestion of a milk-fat emulsion. Bioresource Technology 61(2): 141-149.
Rinzema, A. (1988).Anaerobic treatment of wastewater with high concentration of lipid and sulphate. In Wageningen, Vol. Ph.D.Netherlands: Wageningen Agriculturaal University.
Rinzema, A., Alphenaar, A. and Lettinga, G. (1993). Aanaerobic digestion of long-chain fatty acids in UASB and expanded granular sludge bed reactors. Process Biochemistry 28(8): 527-537.
Rinzema, A., Boone, M., Vanknippenberg, K. and Lettinga, G. (1994). Bactericidal effect of long chain fatty acids in anaerobic digestion. Water Environment Research 66(1): 40-49.
Rittmann, B. E. and McCarty, P. L. (2001).Environmental Biotechnology : Priciple and Applications. McGraw-Hill
Ross, P. J. (1992). Taguchi Techniques for Quality Engineering. N.Y.: McGraw-Hill.
Saxena, R. C., Adhikari, D. K. and Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews 13(1): 167-178.
Shin, H.-S., Youn, J.-H. and Kim, S.-H. (2004). Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. International Journal of Hydrogen Energy 29(13): 1355-1363.
Sonntag, N. O. V. (1979).Composition and characteristics of individual fats and oils. In: Bailey's hdustrial Oil and Fat Products., Vol. 4th ed.(Ed D. Swem). Nekv York: John Wiley & Sons.
Soubes, M., Muxi, L., Fernandez, A., Tarlera, S. and Quirolo, M. (1994). Inhibition of methanogenesis from acetate by Cr+3 and ammonia. Biological Letters 16(2): 195-200.
Suzuki, H., Yoneyama, Y. and Tanaka, T. (1997). Acidification during anaerobic treatment of brewery wastewater. Water Science and Technology 35(8): 265-274.
Ueno, Y., Tatara, M., Fukui, H., Makiuchi, T., Goto, M. and Sode, K. (2007). Production of hydrogen and methane from organic solid wastes by phase-separation of anaerobic process. Bioresource Technology 98(9): 1861-1865.
Van Ginkel, S., Sung, S. W. and Lay, J. J. (2001). Biohydrogen production as a function of pH and substrate concentration. Environmental Science & Technology 35(24): 4726-4730.
Vidal, G., Carvalho, A., Méndez, R. and Lema, J. M. (2000). Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource Technology 74(3): 231-239.
Wang, C. C., Chang, C. W., Chu, C. P., Lee, D. J., Chang, B.-V., Liao, C. S. and Tay, J. H. (2003a). Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Research 37(11): 2789-2793.
Wang, C. C., Chang, C. W., Chu, C. P., Lee, D. J., Chang, B. V. and Liao, C. S. (2003b). Producing hydrogen from wastewater sludge by Clostridium bifermentans. Journal of Biotechnology 102(1): 83-92.
Wang, C. H., Lin, P. J. and Chang, J. S. (2006). Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge. Process Biochemistry 41(6): 1353-1358.
Wang, J. and Wan, W. (2008). Effect of temperature on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy 33(20): 5392-5397.
Wang, J. and Wan, W. (2009). Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy 34(2): 799-811.
Xiao, B. Y., Han, Y. P. and Liu, J. X. (2010). Evaluation of biohydrogen production from glucose and protein at neutral initial pH. International Journal of Hydrogen Energy 35(12): 6152-6160.
Xing, D. F., Ren, N. Q., Wang, A. J., Li, Q. B., Feng, Y. J. and Ma, F. (2008). Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition. International Journal of Hydrogen Energy 33(5): 1489-1495.
Yamada, K., Kamagata, Y. and Nakamura, K. (1997). The effect of endosymbiotic methanogens on the growth and metabolic profile of the anaerobic free-living ciliate Trimyema compressum. FEMS Microbiology Letters 149(1): 129-132.
Yokoyama, H., Moriya, N., Ohmori, H., Waki, M., Ogino, A. and Tanaka, Y. (2007a). Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. Applied Microbiology and Biotechnology 77(1): 213-222.
Yokoyama, H., Waki, M., Moriya, N., Yasuda, T., Tanaka, Y. and Haga, K. (2007b). Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Applied Microbiology and Biotechnology 74(2): 474-483.
Zhao, Y. X., Chen, Y. G., Zhang, D. and Zhu, X. Y. (2010). Waste Activated Sludge Fermentation for Hydrogen Production Enhanced by Anaerobic Process Improvement and Acetobacteria Inhibition: The Role of Fermentation pH. Environmental Science & Technology 44(9): 3317-3323.
Zhu, H., Stadnyk, A., Béland, M. and Seto, P. (2008). Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresource Technology 99(11): 5078-5084.
Zinder, S. H. (1990). Conversion of acetic acid to methane by thermophiles. FEMS Microbiology Letters 75(2-3): 125-137.
Zoetemeyer, R. J., Arnoldy, P., Cohen, A. and Boelhouwer, C. (1982). Influence of temperature on the anaerobic acidification of glucose in a mixed culture forming part of a two-stage digestion process. Water Research 16(3): 313-321.
內政部營建 (2010),「全國都市污水處理廠污泥等處理方式及工程規劃」。
王世忠 (2007),「都會下水污泥環境特性與資源化的回顧」,資源與環境學術研討會,489-501.
王創正 (2006),「廢棄有機污泥以連續批次厭氧消化產氫及甲烷之研究」,長榮大學職業安全與衛生學系,碩士論文。
丘建華 (2001),「應用田口方法於電子薄膜配方之最佳製程條件之探討」。國立中央大學管理學院,碩士論文。
吳石乙 (2009),「生物產氫技術」。
吳耿東 (2004),「再生能源-生質能源」,Vol. 38.
張明毅 (2003),「田口方法簡介」, 國立宜蘭大學生機系。
陳榮星 (2003),「製程之多重品質特性研究」,國防大學國防管理學院後勤管理研究所,碩士論文。
楊易霖 (2002),「有機廢棄物之厭氧消化-前處理及溫度之影響」,國立屏東科技大學環境工程與科學系,碩士論文。
歐陽嶠輝 (2007),「下水道工程學」,長松文化興業股份有限公司.
鄭凱尹 (2000),「高溫厭氧消化廚餘之研究」,國立屏東科技大學環境工程與科學系,碩士論文。
謝穎欣 (2005),「應用田口方法於基因演算法輸入參數設計--以求解多模式專案排程下資源撫平為例」,國立中央大學工業管理研究所,碩士論文。
指導教授 王鯤生(Kuen-sheng Wang) 審核日期 2010-10-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明