博碩士論文 973206024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.133.136.25
姓名 黃子光(Tzu-kuang Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 下水污泥灰合成中孔徑分子篩及表面改質吸附重金屬之研究
(Synthesis of mesoporous molecular sieve using sewage sludge ash and surface modification applications of heavy metal adsorption)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用下水污泥灰作為取代合成中孔徑分子篩(Al-MCM-41)之矽、鋁源,使用三種不同液固比(L/S=3、5、7)之前驅液,探討合成Al-MCM-41時所造成的影響,並與偏矽酸鈉合成之MCM-41作比較,之後將下水污泥灰與偏矽酸鈉所合成之MCM-41進行胺基官能基的表面改質,探討不同條件下官能基的修飾量,以及對重金屬離子的吸附能力;另外將萃取SiO2後的污泥灰合成微孔沸石吸附劑,以達到全資源化的效果。研究結果顯示,當液固比=7時,前驅液的Si/Al比最高,所合成出Al-MCM-41的鋁含量最少,其XRD的特徵峰強度為最高,在結構特性方面,其比表面積為932 m2/g、孔體積為0.93 cm3/g,是三種液固比所合成Al-MCM-41中最高的,相較於偏矽酸鈉所合成的MCM-41,比表面積為1047 m2/g、孔體積為1.05 cm3/g,其差異性不大。由27Al NMR圖譜可發現在54ppm時皆有波峰(Peak)的產生,表示鋁原子為鋁氧四面體,證實鋁原子有進入到MCM-41的骨架當中,而鋁含量會影響特徵峰強度與結構特性。萃取SiO2後的污泥灰二次回收結果顯示,可合成出鈣霞石(Cancrinite)微孔沸石,使得下水污泥灰在本研究中確實達到全資源化的目標。在表面改質的結果顯示,低液固比(L/S=3、5)所合成的MCM-41,因含鋁量較高,使得比表面積降低,會讓官能基修飾量降低。不同迴流時間下,可知迴流時間越長,官能基修飾量會越高。利用下水污泥灰所合成含鋁之MCM-41,官能基修飾量最高為液固比=7、迴流12小時此組(FM7-12H),其氮含量為2.55 mmole/g,偏矽酸鈉所合成純矽MCM-41中,官能基修飾量最高為24小時此組(FMS-24H),氮含量為2.56 mmole/g。重金屬離子吸附方面,FM7-12H與FMS-24H皆屬於Langmuir 等溫吸附模式,FM7-12H對Pb2+、Cu2+、Cd2+的最大吸附量分別為204.08 mg/g、80 mg/g及80 mg/g,FMS-24H對Pb2+的最大吸附量為200 mg/g、Cd2+為84.03 mg/g、Cu2+為78.74 mg/g。
摘要(英) This study investigated the feasibility of synthesizing mesoporous molecular sieve (i.e., referred to as MCM-41), using sewage sludge ash (SSA) as the starting SiO2 sources. Furthermore, the MCM-41 as synthesized was modified, and its performance was evaluated.
Firstly, to prepare the precursor solution for MCM-41 synthesis, the target SiO2 component was extracted from SSA by heating the ash with NaOH (i.e., alkaline fusion). This reaction resulted in the formation of Quartz, Al2O3, Fe2O3, and ash residue. And then, after the ash residue was removed, deionized water was added to the filtered solution at a proper L/S ratio to prepare the precursor solution. As the Al2O3 concentration in the precursor solution may affect the synthesis of MCM-41, the L/S ratio was so determined that resulted in both the highest SiO2 concentration and the lowest Al2O3 concentration (i.e., the highest Si/Al ratio) in a resultant precursor solution. The results indicate that a NaOH/SSA (by weight) of 1.25 and heating a temperature at 400 oC were found to be optimal conditions for alkaline fusion; and a L/S=7 for deionized water and the filtered solid would generated a precursor solution with a highest Si/Al ratio (i.e., 51 in this study).
Secondly, the MCM-41 was synthesized by hydrothermal method at 100 oC, using the precursor solution, ammonium hydroxide, and C16TAB (Cetyltrimethylammonium bromide, as surfactant). After the synthesis process, the resultant products were filtered and calcined at 550 oC to remove the surfactant and the MCM-41was formed. However, due the presence of Al2O3 derived form sewage sludge ash, the MCM-41 as synthesized contained alumiuoxide (referred to as Al-MCM-41). The composition of Al-MCM-41 as synthesized using SSA as starting SiO2 source was found close to that using sodium metasilicate as starting SiO2 source, the former containing 98.2 %(by weight) of SiO2, and the latter 94.7% SiO2, 3.2% Al2O3, 1.6% Na2O, and trace percent of other oxides. The Al-MCM-41 synthesized from SSA in this study had a surface of 932 cm2/g and a pore volume of 0.93 cm3/g, as compared to 1047 cm2/g and 1.05 cm3/g, respectively, of control sample synthesized from Na2SiO3. 27Al MAS NMR analysis of Al-MCM-41 synthesized from the precursor solution revealed that the extracted Al species from SSA was tetrahedrally incorporated in the framework effectively. On the other hand, the ash residual filtered from the extraction process was also successfully synthesized into zeolite (Cancrinite) by alkali hydrothermal reaction, showing a beneficial recycling of the SSA.
Finally, in this study, the surface of MCM-41 as synthesized was further modified with 3-aminopropyltriethoxysilane (APTES) to bonding ammoniums-functional groups to the surface, forming ammonium-functionalized mesoporous materials (AFMM). The resulted showed that the coverage of functional group on MCM-41 surface were increased with increasing surface area of MCM-41 and longer reaction time of refluxing.
A FM7-12H sample (i.e., sample generated at L/S=7 and fluxing time=12 hours) had the largest number of functional groups (N content=2.55 mmole/g), as compared to that of the control sample (N content=2.56 mmole/g). The efficiency to remove heavy metal ions in aqueous solution by the modified MCM-41 were evaluated. It was proved that the adsorption behavior of AFMM on heavy metals ions was best fitted by the Langmuir model. It was noted that the maximum adsorption capacities of FM7-12H sample for Pb(II), Cu(II), Cd(II) were 204.08 mg/g, 80 mg/g, and 80 mg/g, as compared to 200 mg/g, 84.04 mg/g, and 78.74 mg/g, of control sample (FMS-24H), respectively. It is demonstrated that the AFMM synthesized using SSA as SiO2 source was equal-effective in metal adsorption as that prepared using pure SiO2 source (Na2SiO3), suggesting that the preparation of AFMM using SSA as SiO2 source is feasible, effective, and environmental beneficial.
關鍵字(中) ★ 鈣霞石
★ 中孔徑分子篩
★ 下水污泥灰
★ 重金屬離子
★ 表面改質
關鍵字(英) ★ heavy metal ion
★ function group
★ sewage sludge ash
★ cancrinite
★ Al-MCM-41
論文目次 誌謝 i
中文摘要 ii
英文摘要 iii
目錄 v
圖目錄 ix
表目錄 xi
第一章 前言 1
1-1 研究緣起與目的 1
1-2 研究內容 2
第二章 文獻回顧 3
2-1 下水污泥之產出與最終處置方式 3
2-1-1 下水污泥來源與產量 3
2-1-2 下水污泥之物化特性 4
2-1-3 下水污泥的最終處置方式 5
2-2 沸石分子篩發展史 8
2-2-1 界面活性劑之種類與特性 9
2-2-2 矽酸鹽類與界面活性劑的交互作用 11
2-2-3 中孔洞分子篩之合成機制 14
2-3 中孔洞分子篩特性與應用 18
2-3-1 中孔洞MCM-41分子篩的特性 18
2-3-2 中孔洞MCM-41分子篩的應用 20
2-4 中孔洞MCM-41分子篩的表面改質 22
2-4-1 MCM-41表面改質的反應機制 22
2-4-2 不同官能基種類的選擇吸附性 24
2-5 廢棄物合成MCM-41相關研究 27
2-6吸附原理 30
2-6-1 吸附理論 30
2-6-2 吸附模式 31
2-6-3 影響重金屬吸附效果的因子 33
第三章 研究方法論 36
3-1 研究架構 36
3-2 實驗材料與設備 38
3-2-1 實驗材料 38
3-2-2 實驗藥品 39
3-2-3 實驗設備 39
3-3 實驗設計 41
3-3-1 原物料前處理 41
3-3-2 下水污泥灰合成MCM-41試驗 42
3-3-3 MCM-41表面官能基改質試驗 47
3-3-4 重金屬吸附試驗 48
3-4 實驗條件配置 49
3-4-1 原物料基本特性分析 49
3-4-2 以下水污泥灰合成MCM-41之實驗配置 49
3-4-3 MCM-41表面官能基改質之實驗配置 51
3-5 實驗分析方法與儀器 53
3-5-1 主要分析儀器 53
3-5-2 分析方法 54
第四章 結果與討論 63
4-1 下水污泥基本特性分析 63
4-1-1 下水污泥之物化特性 63
4-1-2 毒性特性溶出試驗(TCLP)結果 65
4-1-3 下水污泥之結晶相物種 66
4-2 不同鹼熔條件萃取矽源之結果分析 67
4-2-1 不同鹼熔條件之結晶物種分析 67
4-2-2 不同鹼熔條件之濾液的矽溶出量 69
4-3 下水污泥灰合成MCM-41之物化特性 71
4-3-1 MCM-41之結晶相分析 71
4-3-2 MCM-41之化學組成分析 74
4-3-3 MCM-41之結構特性分析 74
4-3-4 MCM-41之官能基分析 77
4-3-5 MCM-41之NMR分析 78
4-3-6 MCM-41之微結構分析 81
4-4 剩餘污泥灰合成微孔沸石吸附劑潛力評估 84
4-4-1 剩餘污泥灰之基本特性分析 84
4-4-2 微孔沸石之物種分析 85
4-5 改質後MCM-41之基本物化特性鑑定 86
4-5-1 改質後MCM-41之XRD分析 86
4-5-2 改質後MCM-41之物理特性分析 88
4-5-3 改質後MCM-41之FTIR分析 91
4-5-4 改質後MCM-41之29Si NMR分析 94
4-6 重金屬吸附試驗 97
4-6-1不同改質條件對重金屬離子之吸附結果 97
4-6-2 重金屬離子之等溫吸附曲線 99
4-6-3 與其它吸附劑之比較 101
第五章 結論與建議 103
5-1 結論 103
5-2 建議 104
參考文獻 105
參考文獻 1. A.V. Kucherov, A.N. Shigapov, A.V. Ivanov, “Distribution and properties of catalytically active Cu2+-sites on a mesoporous MCM-41 silicate modified by Al, Zr, W, B, or P ions”, Catalysis Today, Vol 110, pp. 330-338,2005.
2. Aghdas Heidari, Habibollah Younesi, Zahra Mehraban,“Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica”, Chemical Engineering Journal, Vol 153, pp. 70–79, 2009.
3. Bhatty, J.I., and Reid, K.J, “Moderate Strength Concrete from Lightweight Sludge Ash Aggregates”, Cement Composites and Lightewight Concrete, Vol 11, pp. 179-187, 1989.
4. Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T-W., Olson D. H., Sheppard E. W., McCullen S. B., Higgins J. B., Schlenker J. L.,“A new family of mesoporous molecular sieves prepared with liquid crystal templates”, J. Am. Chem. Soc.,Vol 114, pp. 10834-10843, 1992.
5. By Jun Liu, Xiangdong Feng, Glen E. Fryxell, Li-Qiong Wang, Anthony Y. Kim, and Meiling Gong, “Hybrid mesoporous materials with functionalized monolayers”, Chem. Eng. Technol., Vol 21, pp. 97-100, 1998.
6. Cyril Delacote, Alain Walcarius, “Mercury(II) binding to thiol-functionalized mesoporous silicas: critical effect of pH and sorbent properties on capacity and selectivity”, Analytica Chimica Acta, Vol 547, pp. 3-13, 2005.
7. Chung-kung Lee, Shin-shou Liu, Lain-Chuen Juang, Cheng-Cai Wang, Kuen-Song Lin, Meng-Du Lyu., “Application of MCM-41 for dyes removal from wastewater”, Journal of Hazardous Materials, Vol 147, pp. 997-1005, 2007.
8. Firouzi A., Kumar D., Bull L.M., Besier T., Sieger P., Huo Q., Walker S.A., Zasadzinski J.A., Glinka G., Nicol J., Margolese D., Stucky G.D., Chmelka B.F., “Cooperative organization of inorganic-surfactant and bimimetic assemblies”, Science, Vol 267, pp. 1138-1143, 1995.
9. Feng Kang, Qiuying Wang, Shouhe Xiang, “Synthesis of mesoporous Al-MCM-41 materials using metakaolin as aluminum source”, Materials Letters, Vol 59, pp. 1426-1429, 2005.
10. F. Rozada, M. Otero, A. Mora’n, A.I. Garcı’a, “Adsorption of heavy metals onto sewage sludge-derived materials”, Bioresource Technology, Vol 99, pp.6332-6338, 2008.
11. Galo J. de A. A. Soler-Illia, Clement Sanchez, Benedicte Lebeau, Joel Patarin., “Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical Structures”, Chem. Rev., Vol 102, pp. 4093-4138, 2002.
12. Griselda A. Eimer, Liliana B. Pierella, Gustavo A. Monti, Oscar A. Anunziata, “Preparation and characterization of aluminium – containing MCM-41”, Catalysis Communications, Vol 4, pp. 118-123,2003.
13. Govindasamy Chandrasekar, Kwang-seok You, Ji-Whan Ahn, Wha-seung Ahn., “Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash”, Microporous and Mesoporous Materials, Vol 111, pp. 455-462, 2008.
14. G. Wang, N.O. Amy, A.B. Elizabeth, D Kelley, Tao Z., A. Tewodros, “Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study”, Journal of Solid State Chemistry, Vol 182, pp. 1649-1660, 2009.
15. GuangJian Wang, Yuran Wang, Yiwu Liu, Zhengwang Liu, YaJie Guo, Guangqing Liu, Zhengxing Yang, MingXia Xu, Lei Wang, “Synthesis of highly regular mesoporous Al-MCM-41 from metakaolin”, Applied Clay Science, Vol 44, pp. 185-188, 2009.
16. Höller H., Wirsching U., “Zeolites formation from fly ash”, Mineral, Vol 1, pp. 21, 1985.
17. Holman G.G, Steenbruggen.G, Janssen Jurkovicova M, “A two step process for the synthesis of zeolites from coal fly ash”, Fuel, Vol 78, pp. 1225-1230, 1999.
18. Hsiao-Lan Chang, Chang-Min Chun, Ilhan A. Aksay, and Wei-Heng shih., “Conversion of fly ash into mesoporous aluminosilicate”, Ind. Eng. Chem. Res., Vol 38, pp. 973-977, 1999.
19. Halina Misran, Ramesh Singh, Shahida Begum, Mohd Ambar Yarmo., “Processing of mesoporous silica materials (MCM-41) from coal fly ash”, Jornal of Materials Processing Technology, Vol 186, pp.8-13, 2007.
20. Huaming Yang, Yuehua Deng, Chunfang Du, Shengming Jin, “Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite”, Applied Clay Science, 2009.
21. Israelachvili J. N., Mitchell D. J., Ninham B. W., J. Chem. Soc., Faraday Trans, Vol 72, pp. 1525-1568, 1996.
22. Issabayeva G., M.K. Aroua, N.M.N. Sulaiman,“Removal of lead from aqueous solutions on palm shell activated carbon”, Bioresource Technology, Vol 97, pp. 2350-2355, 2006.
23. Ian P.B., Jonathan P.B., Vladimir M. Gun’ko, Daniel J.S., “Functionalized silicas: Structural characteristics and adsorption of Cu(II) and Pb(II)”, Colloids and Surfaces A:Physicochem. Eng. Aspects, Vol 307, pp.83-92, 2007.
24. J. C. Vartuli, C. T. Kresge,W. J. Roth, S. B. McCullen, J. S. Beck, K. D. Schmitt, M. E. Leonowicz, J. D. Lutner, E. W. Sheppard, “Advanced catalysts and nanostructured materials: modern synthesis methods”, Academic Press, New York, pp. 1-19, 1996.
25. Jiansheng Li, Xiaoyu Miao, Yanxia Hao, Jiangyan Zhao, Xiuyun Sun, Lianjun Wang., “Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(Ⅵ)”, Journal of Colloid and Interface Science, Vol 318, pp. 309-314, 2008.
26. Jose Aguado, Jesus M. Arsuaga, Amaya Arencibia, Montana Lindo, Victoria Gascon., “Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica”, Journal of Hazardous Materials, Vol 163, pp. 213-221, 2009.
27. Kresge, C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature, Vol 359, pp. 710-712, 1992.
28. Kloetstra K. R., Zandergen H. W., Bekkum H. van, “MCM-41 type materials with low Si/Al ratios”, Catalysis Letters, Vol 33, pp. 157-163, 1995.
29. K.S. Hui, C.Y.H. Chao., “Sythesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH”, Journal of Hazardous Materials, B 137, pp.1135-1148, 2006.
30. Koon Fung Lam, King Lun Yeung, Gordon Mckay, “Efficient Approach for Cd2+ and Ni2+ Removal and Recovery Using Mesoporous Adsorbent with Tunable Selectivity”, Environ. Sci. Technol., Vol 41, pp.3329-3334, 2007.
31. Lucinda J. Davies, Paul McMorn, Donald Bethell, Philip C. Bulman Page, Frank King, Frederick E. Hancock, Graham J. Hutchings, “Oxidation of crotyl alcohol using Ti-β and Ti-MCM-41 catalysts”, Journal of Molecular Catalysis A: Chemical, Vol 165, pp. 243-247, 2001.
32. Lingxia Zhang, Chichao Yu, Wenru Zhao, Zile Hua, Hangrong Chen, Lei Li, Jianlin Shi., “Preparation of multi-amine-grafted mesoporous silicas and their application to heavy metal ions adsorption”, Joural of Non-Crystalline Solids, Vol 353, pp. 4055-4061, 2007.
33. M.E. Davis, C.-Y. Chen, S.L. Burkett, H.-X. Li, “Studies on mesoporous materials:I. Synthesis and characterization of MCM-41”, Microporous materials, Vol 2, pp. 17-26, 1993.
34. M. Busio, J. Janchen, J.H.C. van Hooff, “Aluminum incorporation in MCM-41 mesoporous molecular sieve”, Microporous Materials, Vol 5, pp.211-218, 1995.
35. Monzo, J. Paya, M.V. Borrachero and A. Corcoles , “Use of sewage sludge ash(SSA)-cement admixtures in motars”, Cement and Concrete Research, Vol 26, pp.1389-1398, 1996.
36. M. Selvaraj, A. Pandurangan, K.S. Seshadri, P.K. Sinha, K.B. Lal, “Synthesis, characterization and catalytic application of MCM-41 mesoporous molecular sieves containing Zn and Al”, Applied Catalysis A: General, Vol 242, pp.347-364, 2003.
37. Manuel Algarra, M. Victoria Jimenez, Enrique Rodriguez-Castellon, Antonio Jimenez-Lopez, Jose Jimenez-Jimenez., “Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41”, Chemosphere, Vol 59, pp.779-786, 2005.
38. Marcelo J.B. Souza, Antonio S. Araujo, Anne M.G. Pedrosa, Bojan A. Marinkovic, Paula M. Jardim, Edisson Morgado Jr.,“Textural features of highly ordered Al-MCM-41 molecular sieve studied by X-ray diffraction, nitrogen adsorption and transmission electron microscopy”, Materials Letters, Vol 60, pp. 2682-2685, 2006.
39. M. Halina, S. Ramesh, M.A. Kamarudin., “Non-hydrothermal synthesis of mesoporous materials using sodium silicate from coal fly ash”, Materials Chemistry and Physics, Vol 101, pp. 344-351, 2007.
40. M. Adjdir, T. Ali-Dahmane, F. Friedrich, T. Scherer, P.G. Weidler., “The synthesis of Al-MCM-41 from volclay- A low-cost Al and Si source”, Applied Clay Science, 2009.
41. Peter J. Branton, Peter G. Hall, Kenneth S.W. sing, “Physisorption of nitrogen and oxygen by MCM-41, a model mesoporous adsorbent”, J . Chem. Soc., Chem. Commun., pp. 1257-1258, 1993.
42. Peter J. Branton, Kenneth S. W. Sing, John W. White, “Adsorption of carbon tetrachloride and nitrogen by 3.4 nm pore diameter siliceous MCM-41”, J. Chem. Soc., Faraday Trans., Vol 13, pp. 2337-2340, 1997.
43. Prashant Kumar, Nawal Mal, Yasunori Oumi, Kazuo yamana and Tsuneju Sano., “Mesoporous materials prepared using coal fly ash as the silicon and aluminum source”, Journal of Materials Chemistry, Vol 11, pp. 3285-3290, 2001.
44. Qingdong Qin, Jun Ma, Ke Liu., “Adsorption of anionic dyes on ammonium-functionalized MCM-41”, Journal of Hazardous Materials, Vol 162, pp. 133-139, 2009.
45. R. Leyva-Ramos, J.R. Rangel-Mendez, J. Mendoza-Barron, L. Fuentes-Rubio, R.M. Guerrero-Coronado, “Adsorption of cadmium(ii) from aqueous solution onto activated carbon”, Water Science and Technology, Vol 35, pp.205-211, 1997.
46. R. Hanzel, P. Rajec, “Sorption of cobalt on modified silica gel materials”, Journal of Radioanalytical and nuclear chemistry, Vol 246, pp. 607-615, 2000.
47. Rabih Saad, Safia Hamoudi, Khaled Belkacemi., “Adsorption of phosphate and nitrate anions on ammonium-functionnalized mesoporous silicas”, J porous Mater, Vol 15, pp.315-323, 2008.
48. Shriver, D. F., Atkins, P. W., Langford, C. H., Inorg. Chem., Oxford University Press, Oxford, 1992.
49. Steel A., S.W. Carr, M.W. Anderson, “14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates”, J. Chem. Soc., Chem.commun, pp. 1571-1572, 1994.
50. Schubert U., Husing N., Synthesis of inorganic materials, chapter 4, Wiley-Interscience publications, New York, 2000.
51. S. Kawi, S.-C. Shen, “Effects of structural and non-structural Al species on the stability of MCM-41 materials in boiling water”, Materials Letter, Vol 42, pp. 108-112, 2000.
52. Saha, M. Iglesias, I.W. dimming, M. Streat, “Sorption of trace heavy metals by thiol containing chelating resins”, Solvent Extr. Ion Exch. Vol 18, pp. 133-167, 2000.
53. Safia Hamoudi, A. El-nemr, K. belkacemi, “Adsorptive removal of dihydrogenphosphate ion from aqueous solutions using mono, di- and tri-ammonium-functionalized SBA-15”, J. of colloid and interface science, 2009.
54. Tay, J. H., and K. Y. Show, “Reuse of wastewater sludge in manufacturing non-conventional construction materials-an innovative approach to ultimate sludge disposal,” Water Science and Technology, Vol 26, pp. 1165-1174, 1992.
55. V. Meynen, P. Cool, E.F. Vansant, “Verified syntheses of mesoporous materials”, Microporous and Mesoporous Materials, 2009.
56. X. S. Zhao and G. Q. Lu, “Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption”, J. Phys. Chem. B, Vol 102, pp. 1556-1561, 1998.
57. Xuefeng Liang, Yingming Xu, Guohong Sun, LinWang, Yang Sun, Xu Qin, “Preparation, characterization of thiol-functionalized silica and application for sorption of Pb2+ and Cd2+”, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol 349, pp.61-68, 2009.
58. Yu Sun, Yinghong Yue, Zi Gao, “Synthesis and characterization of Al MCM-41 molecular sieves”, Applied Catalysis A:General, Vol 161, pp. 121-127, 1997.
59. Y. Cesteros, G.L. Haller, “Several factor affecting Al-MCM-41 synthesis”, Microporous and Mesoporous Materials, Vol 43, pp. 171-179, 2001.
60. Yunbo Zhai, Xianxun Wei, Guangming Zeng, Dejian Zhang, Kaifeng Chu, “Study of adsorbent derived from sewage sludge for the removal of Cd2+, Ni2+ in aqueous solutions”, Separation and Purification Technology, Vol 38, pp. 191-196, 2004.
61. Yaping Ye, Xiaoqiang Zeng, Weilana Qian, and Mingwena Wang, “Synthesis of pure zeolites from supersaturated silicon and aluminum alkali extracts from fused coal fly ash”, Journal of Fuel, Vol 87, pp. 1880-1886, 2008.
62. Zhaohua Luan, Chi-Feng Cheng, Wuzong Zhou, and Jacek Klinowski, “Mesopore molecular sieve MCM-41 containing framework aluminum”, J. Phys. Chem., Vol 99, pp. 1018-1024, 1995.
63. 內政部營建署,http://www.cpami.gov.tw/,2008。
64. 行政院環保署,http://www.epa.gov.tw/,2008。
65. 台北市工務局,http://www.sso.taipei.gov.tw/MP_106041.html,2009。
66. 瑞士洛桑管理學院網站,http://www.imd.org/,2007。
67. 何品晶、顧國維、李篤中,城市污泥處理與利用,科學出版社,北京,2003。
68. 林凱隆,「都市垃圾焚化溶渣粉體調製環保水泥之卜作嵐反應特性研究」,國立中央大學環境工程研究所,博士論文,2002。
69. 潘時正,「下水污泥灰渣特性及應用於水泥砂漿之研究」,國立中央大學環境工程研究所,博士論文,2002。
指導教授 王鯤生(Kuen-sheng Wang) 審核日期 2010-10-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明