博碩士論文 973206012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.144.255.90
姓名 劉錡樺(Chi-hua Liu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 水處理污泥轉換活性碳-沸石複合吸附材料之研究
(Conversion of activated carbon-zeolite composites by water Treatment by-products)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究嘗試以淨水場及污水廠產出之水處理污泥為處理對象,先利用鹼熔程序(alkaline fusion process)碳化並活化污泥中之有機碳及矽、鋁組成,再以水熱合成法(hydrothermal reaction)將轉換形成活性碳-沸石複合吸附材料(AC-Z)。過程中將篩選較佳的污泥及與鹼活化劑之混合比例,建立以水處理污泥為原料製備前驅物(precursor)條件,及探討水熱反應與陳化過程(aging process)之操作變數對複合吸附材料之合成及物種晶相之變化,以不同分析及鑑定方法,找出最佳吸附性能之活性碳-沸石複合吸附材料及其合成條件,並進行重金屬及有機染料之吸附試驗。研究結果顯示,利用水處理污泥以鹼熔法及水熱法合成之活性碳複合材料,於下水污泥和淨水污泥灰混合比例分別為30% 及70% 與鹼活化劑(NaOH)添加1.5倍(w/w)為最佳前驅物製備之條件,其具有最佳的碳化及活化結果;在改變不同的水熱條件下,本研究合成之沸石物種包括A型沸石、X型沸石、P型沸石及水合方鈉石,而複合吸附材料之碳含量為8~13%,且陽離子交換容量之範圍為348~445meq/100g。吸附能力之試驗以重金屬鉛、銅及有機染料亞甲基藍做為標的污染物,其最大吸附量分別為2.17、1.64和0.18mmole/g,在混合系統之吸附試驗中,與市售分子篩相較下對於有機污染物更具去除效果,顯示此活性碳-沸石複合吸附材料具有優良的吸附效能,吸附結果皆優於市售沸石分子篩。本研究結合活性碳及沸石兩種吸附材料於一體,確實提升吸附劑之吸附性能,且在複合材料中同時具備活性碳及沸石之疏水性及親水性表面性質,同時有效解決兩種材料之結合問題同時也綜合兩者之優點,故藉以水處理污泥合成活性碳-沸石複合吸附材料深具資材化再利用之潛力及價值。
摘要(英) This study investigated the synthesis of activated carbon-zeolite composites (AC-Z composites) by alkaline fusion with NaOH and hydrothermal treatment process, using water treatment sludge, water purification sludge ash, and/or their combinations (referred to as sludge wastes, SW). To prepare the precursors (i.e., silicates and activated carbon) for further synthesis of AC-Z composites, the governing conditions during alkaline fusion/carbonation processes (i.e., mix ratio of SW and the NaOH/SW ratio) were selected based on the specific surface area and the target zeolite species identified of the resultants. The effects of reaction time during hydrothermal and aging processes on the species formation and variation in the target AC-Z composites were studied. Furthermore, the performance of AC-Z composites was evaluated using heavy metals, organic dye (methylene blue), and/or their combinations.
Experimental results showed that, in the preparation of precursors, a 3:7 SW mix ratio (i.e., sewage sludge: water purification ash, by wt %) and a NaOH/SW=1.5 were the optimum operational conditions for alkaline fusion/carbonation process.
It was found that zeolite Na-A, Na-X, Na-P1, hydroxysodalite and their combinations, with the carbon content ranging from 8~13%, were identified in resultant AC-Z composites.
The cation exchange capacities of the AC-Z composites synthesized in this study were found ranging from 348-445meq/100g. The maximum adsorption capacity in single and mixed adsorption tests of lead, copper and methylene blue were found to outperform the commercial zeolites (i.e., zeolite 4A and zeolite 13X). The synthesized AC-Z composites were characterized by combining the hydrophobic and hydrophilic properties, thus showing the excellent adsorption efficiency for both metal ions and organic dye. This suggests the preparation of AC-Z composites by alkaline fusion/carbonation and hydrothermal processes are feasible and various applications of the resultant AC-Z composites are potential.
關鍵字(中) ★ 沸石
★ 水熱法
★ 污泥
★ 吸附
★ 陽離子交換容量
關鍵字(英) ★ Cation exchange capacity
★ Sludge
★ Hydrothermal synthesis
★ Adsorption
★ Zeolite
論文目次 誌謝 i
中文摘要 ii
英文摘要 iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 1
1-1 研究緣起與目的 1
1-2 研究內容 2
第二章 文獻回顧 3
2-1 下水污泥與淨水污泥來源與特性 3
2-1-1 下水污泥與淨水污泥之來源及產量 3
2-1-2 下水污泥與淨水污泥之物化特性 7
2-1-3 現階段污泥之處理處置及再利用方式 10
2-2 活性碳與沸石 14
2-2-1 活性碳與沸石之發展背景 14
2-2-2 活性碳與沸石之結構特性 15
2-2-3 活性碳與沸石之製備方法與合成機制 21
2-2-4 結合活性碳與沸石之優勢 26
2-3 廢棄物製備沸石 27
2-3-1 以廢棄物製備沸石及合成之方式 27
2-3-2 沸石合成之影響因子 30
2-3-3 沸石種類與陽離子交換容量之關係 34
2-4 吸附理論 36
2-4-1 吸附現象 36
2-4-2 等溫吸附曲線 39
2-4-3 吸附模式 43
2-4-4 吸附之影響因子 45
第三章 研究材料與方法 49
3-1 研究架構 49
3-2 實驗材料與設備 51
3-2-1 實驗材料 51
3-2-2 實驗設備 53
3-3 實驗流程與設計 55
3-3-1 活性碳-沸石(AC-Z)複合吸附材料之合成與鑑定 55
3-3-2 活性碳-沸石(AC-Z)複合材料吸附能力探討 59
3-4 實驗條件與配置 62
3-4-1 複合材料前驅物製備之實驗條件配置 62
3-4-2 複合材料水熱合成鑑定之實驗條件配置 63
3-4-3 複合材料吸附特性之實驗條件配置 65
3-5 實驗儀器與分析方法 66
3-5-1 實驗儀器 66
3-5-2 分析條件及方法 68
第四章 結果與討論 75
4-1 材料基本性質分析 75
4-1-1 下水污泥 75
4-1-2 淨水污泥 80
4-2 探討不同組成條件對前驅物製備之影響 85
4-2-1 不同製備條件下前驅物之晶相物種分析結果 85
4-2-2 不同前驅物製備條件下活性碳-沸石之比表面積分析結果 86
4-2-3 不同前驅物製備條件下活性碳-沸石之晶相物種分析結果 87
4-2-4 小結 89
4-3 以水熱法合成活性碳-沸石複合吸附材料 90
4-3-1 水熱條件改變對活性碳-沸石物種晶相變化之分析結果 90
4-3-2 陳化條件改變對活性碳-沸石物種晶相變化之分析結果 98
4-3-3 陳化條件改變對活性碳-沸石之陽離子交換能力分析結果 101
4-3-4 陳化條件改變對活性碳-沸石之物化特性分析結果 103
4-4 活性碳-沸石(AC-Z)複合吸附材料吸附特性探討 111
4-4-1 不同類型的吸附材料在單一系統下之吸附結果 111
4-4-2 不同類型的吸附材料在混合系統下之吸附結果 117
第五章 結論與建議 121
5-1 結論 121
5-2 建議 123
參考文獻 125
參考文獻 1. Ahmadpour A. and Do D. D., “The preparation of active carbons from coal by chemical and physical activation”, Carbon, vol. 34, No. 4, pp. 471-479 (1996).
2. Bansal R.C., Donnet J. B., and Stoeckli F., Active Carbon, Marcel Dekker INC., New York and Basel, (1988).
3. Barrett P.A., Camblor M.A., Corma A., Jones R.H. and Villaescusa L.A., “Synthesis and structure of as-prepared ITQ-4, a large pore pure silica zeolite: the role and location of fluoride anions and organic cations,” physical chemistry B, Vol. 102, No. 21, pp. 4147-4155 (1998).
4. Brunauer S., Deming L. S., Deming W. S. and Teller E., “On a theory of the Van der Waals Adsorption of gases,” Am. Chem. Soc., Vol. 62, No. 7, pp. 1723-1732 (1940).
5. Caturla. F., Molina-Sabio. M. and Rodrfguez-Reinoso F., “Preparation of activated carbon by chemical activation with ZnCl2,” Carbon, Vol. 29, No. 7, pp. 999-1007 (1991).
6. Chang H. L. and Shih W.H., “Synthesis of zeolites A and X from fly ashes and their ion-exchange behavior with cobalt ions,” Vol. 39, No. 11, pp 4185-4191 (2000).
7. Dalai A. K., Pradhan N. C., Rao M. S. and Gokhale K. V. G. K., “Synthesis and characterization of NaX and Cu-exchanged NaX zeolites from silica obtained from rice husk ash,” Journal of Engineering & Materials Sciences, Vol. 12, No. 2, pp. 227-234 (2005).
8. Elizalde-González M. P., Mattusch J., Wennrich R. and Morgenstern P., “Uptake of arsenite and arsenate by clinoptilolite-rich tuffs,” Microporous and Mesoporous Materials, Vol. 46, No. 2-3, pp. 277-286 (2001).
9. Everm D. H., IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry, Pure and Appl., London Butterworths, Chem. 31, pp. 578 (1972).
10. Fana Y., Zhang F. S. and Feng Y., “An effective adsorbent developed from municipal solid waste and coal co-combustion ash for As(V) removal from aqueous solution,” Hazardous Materials, Vol. 159, No. 2-3, pp. 313-318 (2008).
11. Genieva S. D., Turmanova S. C., Dimitrova A. S. and Vlaev L. T. , “Characterization of rice husks and the products of its thermal degradation in air or nitrogen atmosphere,” Thermal Analysis and Calorimetry, Vol. 93, No. 2, pp. 387-396 (2008).
12. Höller H. and Wirsching U., “Zeolite formation from fly ash,” Mineral, Vol. 63, No. 1, pp. 21-43 (1985).
13. Hollman G. G., Steenbruggen G. and Janssen-Jurkovičova M., “A two-step process for the synthesis of zeolites from coal fly ash,” Fuel, Vol. 78, No. 10, pp. 1225-1230 (1999).
14. Hui K. S. and Chao C. Y. H., “Effects of step-change of synthesis temperature on synthesis of zeolite 4A from coal fly ash,” Microporous and Mesoporous, Vol. 88, No. 1-3, pp. 145-151 (2006).
15. Inada M., Tsujimoto H., Eguchi Y., Enomoto N. and Hojo J., “Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process,” Fuel, Vol. 84, No. 12-13, pp. 1482-1486 (2005).
16. Issabayeva G., Aroua M. K. and Sulaiman N. M., “Removal of lead from aqueous solutions on palm shell activated carbon,” Bioresource Technology, Vol. 97, No. 18, pp. 2350-2355 (2006).
17. Jha V. K., Matsuda M. and Miyake M., “Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for , , and ,” Hazardous Materials, Vol. 160, No. 1, pp. 148-153 (2008).
18. Joyce R. S., and Sukenik V. A., “Feasibility of Granular Activated Carbon Adsorption for Waste Water Renovation,” Public Health Service Publication, No. 999-WP-12, (1964).
19. Kim D.S., Chang J.S., Hwang J.S., Park S.E. and Kim J.M., “Synthesis of zeolite beta in fluoride media under microwave irradiation,” Microporous Mesoporous Material, Vol. 68, No. 1-3, pp. 77-82 (2004).
20. Koller H., Wölker A., Villaescusa L.A., Díaz-Cabañas M.J., Valencia S. and Camblor M.A., “Five-coordinate silicon in high-silica zeolites,” Am. Chem. Soc., Vol. 121, No. 14, pp. 3368-3376 (1999).
21. Lewis I. C., “Chemistry of carbonization”, Carbon, vol. 20, No. 6, pp. 519-529 (1982).
22. Lide D. R., Handbook of chemistry and physics, 82nd Ed., CRC Press, Boca Raton , (2001).
23. Ma J., Sun H., Su S., Cheng W. and Li R., “A novel double-function porous material: zeolite-activated carbon extrudates from elutrilithe,” Vol. 15, No. 3, pp. 289-294 (2008).
24. Majdan M., Pikus S., Kowalska-Ternes M., Gladysz-Plaska A., Staszczuk P., Fuks L. and Skrzypek H., “Equilibrium study of selected divalent d-electron metals adsorption on A-type zeolite,” Colloid Interf. Sci., Vol. 262, No. 2, pp. 321-330 (2002).
25. Mendez A., Gasco G., Freitas M.M.A., Siebielec G., Stuczynski T. and Figueiredo J.L., “Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges” Chemical Engineering, Vol. 108, No. 1-2, pp.169-177 (2005).
26. Molina A., Poole C., “A comparative study using two methods to produce zeolites from fly ash,” Minerals Engineering, Vol. 17, No. 2, pp. 167-173 (2004).
27. Murayama N. and Hayashi H., “Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction,” Mineral Science, Vol. 28, No. 17, pp. 4781-4786 (1993).
28. Murayama N., Yamamoto H. and Shibata J., “Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction,” Mineral Processing, Vol. 64, No. 1, pp. 1-17 (2002).
29. Ojha K., Pradhan, N. C. and Samanta A. N., “Zeolite from fly ash: synthesis and characterization,” Bull. Mater. Sci., Vol. 27, No. 6, pp. 555-564 (2004).
30. Okasfe O. and Bosch H., “The production and characterization of activated carbon,” Chem. Age of India, Vol. 31, No. 3, pp. 238-241 (1980).
31. Qiu W. and Zheng Y., “Arsenate removal form water by an alumina-modified zeolite recovered from fly ash,” Hazardous Materials, Vol. 148, No. 3, 721-726 (2007).
32. Querol X., Moreno N., Umaña J.C., Alastuey A., Hernández E., López-Soler A. and Plana F., “Synthesis of zeolites from coal fly ash: an overview,” Coal Geology, Vol. 50, No. 1-4, pp. 413-423 (2002).
33. Querol X., Plana F., Alastuey A. and López-Soler A., “Synthesis of Na-zeolites from fly ash,” Fuel, Vol. 76, No. 8, pp. 793-799 (1997).
34. Ramirez D., Sullivan P. D., Rood M. J. and Hay J. K., “Equilibrium adsorption of phenol-, tire-, and coal-derived activated carbons for organic vapors,” Environmental Engineering, Vol. 130, No. 3, pp. 231-241 (2004).
35. Rayalu S.S., Udhoji J.S., MUnshi K.N. and Hasan M.Z., “Highly crystalline zeolite-A from fly ash of bituminous and lignite coal combustion,” Hazardous Materials, Vol. 88, No. 1, pp. 107-121 (2001).
36. Ríos C.A. and Williams C.D., “Synthesis of zeolitic materials from natural clinker: a new alternative for recycling coal combustion by-products,” Fuel, Vol. 87, No. 12, pp. 2482-2492 (2008).
37. Schmitt C. R. and Hall J. E., “Analytical Characterization of Water Treatment Plant Sludge,” AWWA, Vol. 67, No. 1, pp. 40-45, 1975.
38. Shigemoto N., Hayashi H. and Miyaura K., “Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction,” Mineral Science, Vol. 28, No. 17, pp. 4781-4786 (1993).
39. Spinosa L. and Vesilind P. A., “Sludge into Biosolids: Processing, Disposal, Utilization,” IWA Publishing, 2001.
40. Suzuki M., Adsorption Engineering, Elsevier, Amsterdam, pp.35 (1990).
41. Tanaka H., Sakai Y. and Hino R., “Formation of Na-A and -X zeolite from waste solution in conversion of coal fly ash to zeolites,” Materials Research Bulletin, Vol. 37, No. 11, pp. 1873-1884 (2002).
42. Turmanova S. C., Dimitrova A. S. and Vlaev L. T., “Study of polypropene composites filled with rice husks ash,” Oxidation Communications, Vol. 31, No. 2, pp. 465-481 (2008).
43. Um N. I., Han G. Cu., You K. S. and Ahn J. W., “Immobilization of Pb, Cd and Cr by synthesis NaP1 zeolite form coal bottom ash treated by density separation,” resources processing, Vol. 56, No. 3, pp. 130-137 (2009).
44. Vučinić D., Miljanović I., Rosić A. and Lazić P., “Effect of Na2O/SiO2 mole ratio on the crystal type of zeolite synthesized form coal fly ash,” Serbian Chemical Society, Vol. 68, No. 6, pp. 471-478 (2003).
45. Wang C. F., Li J. S., Wang L.J. and Sun X. Y., “Influence of NaOH concentration on synthesis of pure-form zeolite A from fly ash using two-stage method, “ Hazardous Materials, Vol. 155, No. 1-2, pp. 54-64 (2008).
46. Wang X. S. and Qin Y., “Equilibrium sorption isotherms for of Cu2+ on rice bran,” process Biochemistry, Vol. 40, No. 2, pp. 677-680 (2005).
47. Weitkamp J., “Zeolites and catalysis,” Solid State Ionics, Vol. 131, No. 1-2, pp. 175-188 (2000).
48. Wu D., Lu Y., Kong H., Ye C. and Jin X., “Synthesis of zeolite form thermally treaded sediment,” Industrials and engineering chemistry research, Vol. 47, No. 2, pp. 295-302 (2008).
49. Wu D., Zhang B., Yan L., Long H. and Wang X., “Effect of some additives on synthesis of zeolite from coal fly ash,” Mineral Processing, Vol. 80, No. 2-4, pp. 266-272 (2006).
50. Xinyuan Molecular Sieve,網頁資料,網址:http://www.molecularsieve.org/。
51. Zogorski J.S. and Faust S.D., A.J. Rubin Editor, “Equilibria of adsorption of phenols by granular activated carbon,” Chemistry of Wastewater Technology, Science Publishers, Ann Arbor, Michigan (1978).
52. 內政部營建署網站,網頁資料,網址:http://www.cpami.gov.tw/。
53. 台北自來水事業處網站,網頁資料,網址:http://www.twd.gov.tw/。
54. 台灣省自來水公司網站,網頁資料,網址:http://www.water.gov.tw/。
55. 立本英機、安部郁夫,高尚愚譯編,活性碳的應用技術,東南大學出版社,台灣,第161-163頁(2002)。
56. 江慧嫻,「工業廢水污泥/淨水污泥共同熔融處理之基礎特性及資源化研究」,碩士論文,國立台灣大學環境工程研究所,台北市(2001)。
57. 行政院環保署廢棄物管制中心,網頁資料,網址:
http://waste.epa.gov.tw/prog/index.htm。
58. 呂文芳,“淨水廠污泥脫水處理特性研究",行政院國家科學委員會專題研究計畫成果報告(1992)。
59. 林正芳,“都市污水廠污泥熱裂解之資源化研究",碩士論文,國立台灣大學環境工程研究所,台北市(1996)。
60. 洪仁陽、張敏超、邵信、張王冠,“淨水廠之污泥減量技術",自來水會刊,第二十二卷第一、二期,第61-66頁(2003)。
61. 徐如人、龐文琴、于吉紅、霍啟升、陳接勝,分子篩與多孔材料化學,科學出版社,北京(2004)。
62. 國際沸石學會(Internation Zeolite Association,IZA)網站,網頁資料,網址:
http://www.iza-online.org/。
63. 莊曜嘉,“含藻污泥脫水調理之研究",碩士論文,國立交通大學環境工程研究所,新竹市(1996)。
64. 陳文樟,“簡介活性碳製造、分類及應用",中鼎月刊,第321期,第17-21頁,2006。
65. 陳宏銘,“都市下水污泥熔融特性之基礎探討",碩士論文,國立中央大學環境工程研究所,中壢市(1992)。
66. 陳宜晶,“利用添加劑提昇淨水污泥燒結之材料品質研究",碩士論文,逢甲大學環境工程與科學系研究所,台中市(2003)。
67. 黃富昌,“土壤結構及化性對有機污染物吸/脫附特性之研究",博士論文,國立中央大學環境工程研究所,中壢市(1994)。
68. 臺北市政府工務局衛生下水道工程處,網頁資料,網址:
http://www.sso.taipei.gov.tw/。
69. 劉又瑞,“淨水污泥混合營建廢棄土製磚及燒結人造骨材的研究",碩士論文,國立交通大學環境工程研究所,新竹市(2002)。
70. 劉志成、賴志彥,「污泥調理脫水技術及其新發展」,環保月刊,第二卷,第八期,第141-149頁(2002)。
71. 歐陽嶠暉,「下水道工程學」,長松文化,台北市(2007)。
72. 潘泰安,「以農業廢棄物為原料合成微孔吸附劑之資源化研究」,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,高雄市(2003)。
73. 蔣本基、張璞,“有機溶劑蒸氣之吸附及脫附研究”,工業污染防治,第58期(1986)。
指導教授 王鯤生(Kuen-sheng Wang) 審核日期 2010-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明