博碩士論文 972203048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.148.105.22
姓名 黨苓之(Ling-Chih Tang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 高性能鋰離子電池的製備
(Preparation of high-performance lithium-ion battery)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鋰電池之陰極經過處理產生特殊結構之固態電解質介面(solid electrolyte interface,SEI ),有助於充放電過程中鋰離子之傳遞,並提升電極之穩定性,同時亦有助於提高鋰電池的電性及安全性。
針對此本研究提出兩種改進固態電解質介面的方法達成製作高性能高安全性鋰電池之目標。本研究第一部份藉由添加導電高分子修飾 SEI,增進鋰離子電池的快充效能及電池壽命。由多種單體中篩選出thiophene單體衍生物3,4-Ethylenedioxythiophene (EDOT)並將之進行電化學聚合附著於陰極材料表面。導電高分子具有電子傳遞主鏈及離子傳遞側鏈,在陰極上構建了有效的磷酸鋰鐵電荷轉移。添加了EDOT可看出在C-Rate及壽命上皆有改進,高濃度可提高電容量,但並不是越高越好。隨著濃度的增加,所需活化穩定的圈數也越長,也越容易阻塞電極上離子的傳遞,本研究以0.03M pEDOT為最佳化條件。
第二部分為經由在電解質液中添加活性分子改善鋰離子電池的安全性。目前市售鋰離子電池廣泛採用的陰極材料鈷酸鋰,其整體安全性仍待突破。本研究將巴比妥酸(BTA)及其衍生物分別添加到以鈷酸鋰為陰極材料的電解質液中,藉由13DBTA與BTA的化學特性觀察其改變,由熱差式掃描分析儀(DSC)顯示放熱溫度延後,但在電池的測試中也發現有電容量的損失。因此藉由添加比例的調控,可控制電池性能與安全效果的提升。相較於一般電池使用耐燃劑,雖可穩定電池的安全性,卻大量犧牲了電池的電容量,本研究則兼顧循環壽命與熱穩定性的特性達到雙贏的效果。
摘要(英) The cathode of Li-ion battery after charge-discharged can produce a special structure named solid electrolyte interface (solid electrolyte interface, SEI), which helps lithium ion transmission during charge and discharge process, and improves the electrode stability. Charge capacity and safety can also be improved by improving SEI structure. The research presents two approaches to the improvement of SEI structure with the aim to produce high performance and safe lithium battery. This study is divided into two parts. The first part describes the modification of SEI through the addition of conducting polymer, which enhances both the C-rate capacity and cycle life. After screening several monomers, the thiophene monomer derivatives: 3,4-Ethylenedioxythiophene (EDOT) is found to be most effective for this purpose after electrochemical polymerization on the cathode surface. The conductive polymer is composed of electronic conducting main chain and ion conductive side-chain, enabling an efficient charge transfer on the interface of the LiFePO4 cathode particles. The addition, EDOT has effectively improved the C-Rate capability and life cycle. The improvement is found to increase with EDOT concentration but optimized at certain threshold. In presence of excess EDOT, longer activation cycle (during which polymerization is achieved) will be required to completely polymerize EDOT, and the interface may be too thick whcih blocks the litium insertion. In this system, 0.03M is the optimized concentration.
The second part of the study is to improve lithium battery safety feature with the addition of functional molecules in the electrolytes. LiCoO2 is the most widely used cathode material in commercial lithium ion batteries, but the safety remains an issue which urgently needing improvement. In this research, barbituric acid (BTA) and its derivatives as well as conducting polymer were added to the electrolyte to improve lithium battery safety. The delay of exothermic temperature can be observed by differential scanning thermal calorimetry (DSC). Carefully balancing the component composition, it is found the battery performance and safety features can both be enhanced. Conventional safety technology uses flame retardants to reduce electrolyte flammability, temperature control is not satisfactory, and the charge capacity usually suffers greatly. In contrast, present approach achieved the thermal stability while still maintaining the charge capacity and long cycle life.
關鍵字(中) ★ 安全添加劑
★ 導電高分子
★ 巴比妥酸
關鍵字(英) ★ 1,3-Dimethylbarbituric acid
★ EDOT
★ barbituric acid
★ conductive polymer
論文目次 摘 要 I
Abstract II
誌 謝 IV
目錄 V
圖 目錄 VIII
表目錄 XIII
第一章 緒論 1
1-1 鋰電池之發展背景介紹 1
1-2 鋰離子電池之基本工作原理 3
1-3 鋰離子電池發展之瓶頸與缺點 4
1-4 研究動機與目的 7
第二章 文獻回顧 8
2-1 陰極材料的簡介 8
2-1-1 金屬氧化物: 8
2-1-2 非氧化物: 10
2-2 鋰電池性能的改質 11
2-2-1 導電高分子 11
2-2-2導電高分子修飾LiFePO4系統 13
2-3鋰電池熱穩定性 19
2-3-1 SEI的產生 20
2-3-2 陰極材料本身的放熱反應 22
2-4 安全性改質的技術及進展 25
2-4-1正增溫係數層(Positive-temperature-coefficient, PTC) 25
2-4-2 安全添加劑 27
2-4-3 常見的安全性研究測試方法 37
第三章 實驗方法 39
3-1 實驗儀器設備 39
3-2 實驗藥品器材 40
3-3 實驗步驟 41
3-3-1 製備EDOT電解質液 41
3-3-2製備13DBTA電解質液 41
3-3-3 製備混合比例13DBTA/BTA 電解質液 41
3-3-4製備BMI電解質液 42
3-4 材料鑑定分析 42
3-4-1 循環伏安法電聚合導電高分子 42
3-4-2 掃瞄式電子顯微鏡分析(SEM) 42
3-4-3 微分掃描熱卡分析儀 (DSC) 43
3-4-4變溫電子自旋共振(VT electron spin resonance, ESR) 43
3-4-5 核磁共振儀分析(NMR) 44
3-4-6 電解質液導電度測試 44
3-5 材料電化學特性分析 45
3-5-1電池性能測試 45
3-5-2 交流阻抗分析儀測試(AC Impedance) 46
3-5-3慢速循環伏安分析 48
第四章 結果與討論 49
4-1 導電高分子添加在磷酸鋰鐵系統中之鑑定分析與電性探討 49
4-1-1電化學分析-導電高分子之材料選擇 49
4-1-2 電解質液導電度測試 52
4-1-3 掃描式電子顯微鏡分析 53
4-1-4 電池性能分析 54
4-1-5 交流阻抗分析儀測試 59
4-1-6 循環伏安分析 62
4-2 巴比妥酸衍生物添加於鈷酸鋰系統中之鑑定分析與電性探討 64
4-2-1以變溫電子自旋共振(ESR)印證自由基的存在 66
4-2-2 自由基位置之鑑定 67
4-2-3 BTA在高溫時的keto-enol 互換 75
4-2-4 7Li-NMR 78
4-2-4 掃描式電子顯微鏡分析表面型態 80
4-2-5 以DSC分析熱穩定度的變化 82
4-2-6 電池性能測試 84
4-2-7 電池交流阻抗分析 90
第五章 結論與展望 93
5-1 導電高分子添加在磷酸鋰鐵系統 93
5-2 巴比妥酸衍生物添加於鈷酸鋰系統 94
參考文獻 95
參考文獻 [1] Wak ihara, M. J. Mater Sci Eng. 2001, R 33: 1092134.
[2] 陳金銘, 能源材料課程講義
[3] Zheng, Z.; Shen, W.; Tang, Z. 化學世界. 2004, 270.
[4] Bruno, S.; J?rgen, G. J. Power Sources 2010, 195, 2419–2430.
[5] Wvan Schalkwijk, B.; Scrosati, E. Advances in Lithium-ion Batteries, Kluwer
Academic/Plenum, Boston, 2004
[6] Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, DOE, July 2007
[7] http://www.sc.doe.gov/bes/reports/files/EES_rpt.pdf
[8] Reimers, J. N.; Dahn, J. R. J. Electrochem. Soc. 1992, 139, 2091–2097.
[9] Ohzuku, T.; Ueda, A. J. Electrochem. Soc. 1994, 141, 2972–2977.
[10] Ohsaki, T.; Kishi, T.; Kuboki, N.; Takami, N.; Shimura, Y.; Sato, M.; Sekino, A.; J. Power Sources 2005, 146, 97.
[11] Doh C.H.; Kim D.H.; Kim H.S.; Shin H.M.; Jeong Y.D.; Moon S. I.; Jin B.S.; Eom S.W., J. Power Sources 2008, 175, 881.
[12] Arai, H.; Okada, S.; Sakurai, Y. J. Electrochem. Soc. 1997, 144, 9.
[13] Gao, Y.; Yakovleva, M.; Ebner, W. J. Electrochem Solid State Lett. 1998, 1: 1172119.
[14] Broussely, M.; Biensan, P.; Simon, B.; J. Electrochem Acta. 1999, 45, 3222.
[15] Hayashi, N.; Ikuta, H.; Wakihara, M.; et al. J. Electrochem Soc. 1999, 146: 135121354.
[16] Zheng, Z. S.; Tang, Z. L.; Zhang, Z. T.; et al. J. Inorg Mater. 2001, 16: 118121188.
[17] Zheng, Z. S.; Tang, Z. L.; Zhang, Z.T.; et al. J. Mater Sci& Tech, (accepted)
[18] Chiang, Y. M.; Sadoway, D. R.; Jang, Y. I. et al. J. Electrochem. Solid State.1999, 2 (3): 1072110.
[19] http://www.phy.cmich.edu/people/petkov/nano.html
[20] Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc. 2001, 148, A224.
[21] Patil, A.; Patil, V.; Shin, D. W.; Choi, J-W.; Paik, D-S.; Yoon, S-J. Materials Research Bulletin 2008, 43, 1913–1942.
[22] Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. Solid State Commun. 2004, 132,181.
[23] Ellis, B.; Subramanya Herle, P.; Rho, Y.-H.; Nazar, L. F.; Dunlap, R.; Perry, Laura K.; Ryan, D. H. Faraday Discussions 2007, 134, 119–141.
[24] Petr Nova´k, Klaus Muller, K. S. V. Santhanam, Otto Haas, Chem. Rev. 1997, 97, 207
[25] Scrosati B., Application of Electroactive Polymers, Chapman & Hall 1993.
[26] Inzelt G.; Pineri M.; Schultze J. W.; Vortyntsev M. A., Electrochem. Acta 2000, 45, 2403.
[27] Roncali J., Chem. Rev. 1992, 92, 711.
[28] 何麗貞,“博士論文聚?吩衍生物之電化學聚合及其在鋰離子電池陰極材料之應用”, 國立中山大學2006
[29] Huang, H.; S. Yin, S. C.; Nazar, L. F. Electrochem. Solid-State Lett. 2001, 4, A170.
[30] Croce, F.; D’Epifanio, A.; Hassoun, J.; Deptula, A.; Olczac, T.; Scrosati, B. Electrochem. Solid-State Lett. 2002, 5, A47.
[31] Wang G.X., Yang L.; Chen Y.; Wang J.Z.; Steve Bewlay; Liu H.K., Electrochem Acta 2005, 50, 4649–4654
[32] Wang L.X.; Li X.G.; Yang Y.L.; React. Funct. Polym. 2001, 47, 125.
[33] T. Boinowitz; G. Suden; U.Tormin; H. Krohn; F. Becks, J. PowerSources. 1995, 56, 179.
[34] Huang Y. H.; Park K. S.; Goodenough John B., Journal of The Electrochemical Society 2006, 153, A2282-A2286.
[35] T. T?ken; B. Yazıcı; M. Erbil, Prog. Org. Coat. 2004, 51, 152.
[36] Huang Y. H.; Goodenough John B., Chem. Mater. 2008, 20, 7237–7241
[37] Venancio, E. C.; Motheo, A. J.; Amaral, F. A.; Bocchi, N., J. Power Sources. 2001, 94, 36.
[38] Y. Ein-Eli; S.F. McDevitt; D. Aurbach; B. Markovsky; A. Schecheter. J.Electrochem. Soc. 1997,144, L180.
[39] D. Aurbach; Y. Ein-Eli, J. Electrochem. Soc. 1995, 142, 1746.
[40] D. Bar-Tow; E. Peled; L. Burstein; J. Electrochem. Soc. 1999, 146, 824.
[41] E. Peled; D. Bar Tow; A. Merson; A. Gladkich; L. Burstein; D. Golodnitsky. J. Power Sources 2001, 52, 97–98.
[42] C. Menachem; E. Peled; L. Burstein; Y. Rosenberg, J. Power Sources 1997, 68, 277.
[43] Y. Ein-Eli; V.R. Koch; J. Electrochem. Soc. 1997, 144, 2968.
[44] Cao Y.L.; Xiao L.F.; Ai X.P.; Yang H.Z., Electrochem. Solid-State Lett. 2003, 6 A30.
[45] Pan Q.M.; Guo K.K.; Wang L.Z.; Fang S.B., J. Electrochem. Soc. 2002, 149, A1218.
[46] Zhang S.S.; Ding M.S.; Xu K.; J. Allen; Jow T.R.; Electrochem. Solid-State Lett. 2001, 4, A206.
[47] Zhang S.S.; Xu K.; Jow T.R., Electrochim. Acta 2006, 51, 1636.
[48] S. Matsuta; T. Asada; K. Kitaura, J. Electrochem. Soc. 2000, 147, 1695.
[49] E. Peled; C. Menachem; D. Bar-Tow; A. Melman, J. Electrochem. Soc. 1996, 143 L.4.
[50] Zhang S. S., J. Power Sources. 2006, 162, 1379–1394.
[51] MacNeil D.D.; Dahn J.R.; J. Electrochem. Soc. 2001, 148, A1205.
[52] Yasunori B.; Shigeto Okada; Jun-ichi Yamaki, Solid State Ionics 2002, 148, 311 – 316.
[53] J.R. Dahn; E.W. Fuller; M. Obrovac; U. von Sacken, SolidState Ionics 1994, 69, 265.
[54] P.G. Balakrishnan; R. Ramesh; T. Prem Kumar, Journal of Power Sources 2006, 155, 401–414.
[55] Wang Xianming; Yasukawa Eiki; Kasuya Shigeaki, J. Electrochemical Society 2001, 148, A1058-A1065.
[56] Xu Kang; Ding Michael S.; Shengshui Zhang; Jan L. Allen; T. Richard Jow, J. Electrochemical Society 2002, 149, A622-A626.
[57] Wang Qingsong; Sun Jinhua; Yao Xiaolin; Chenb Chunhua, Electrochemical and Solid-State Letters 2005, 89, A467-A470.
[58] Q Wang ingsong; Sun Jinhua a; Chen Chunhua, Journal of Power Sources 2006, 162, 1363–1366.
[59] Yokoyamak; Sasano, T.; Hiwara, A.; Fluorine-substituted cyclic carbonate electrolytic solution and battery containing the same: US, 6010806[P].2000.
[60] Sato Kazuya; Yamazaki Ikiko; Okada Shigeto; Yamaki Jun-ichi; Solid State Ionics 2002, 148, 463– 466.
[61] Ihara M.; Hang B.T.; Sato K; et al. J. Electrochem. Soc. 2003, 150, A1476-A1483.
[62] Wei Hongbing; Yang Song; Wang Caijuan; Zhao Yong, Battery Bimon Thly, 2009, Oct1, 139, No15.
[63] Shim Eun-Gi; Nam Tae-Heum; Kim Jung-Gu; H Kim yun-Soo; Moon Seong-In Journal of Power Sources 2008, 175, 533–539.
[64] Jiao, X.L.; Chen, D.R.; Gu. Y.X. J. Phys. Chem. B. 2005, 109, 17901.
[65] Michele R. Chierotti; Roberto Gobetto; Luciano Milone; Paolo Venturello, Crystal Growth & Design 2008, 8, No. 5.
[66] Gu Yuanxiang; Chen Dairong; Jiao Xiuling, J. Phys. Chem. B. 2005, 109, 17901-17906
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2010-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明