博碩士論文 972203025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.15.192.109
姓名 張傑鈞(Chieh-Chun Chang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 氮摻雜二氧化鈦奈米管於燃料電池觸媒載體的應用
(N-doped TiO2 Nanotube for PtRu Catalysts in Fuel Cells)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究乃有關於改良直接甲醇燃料電池陽極觸媒系統。研究中使用氮取代技術將氮摻雜於二氧化鈦奈米管 (N-TiNT),提昇導體電子導電度,改善觸媒金屬與載體間作用力,增進觸媒金屬對於甲醇的氧化能力,達到提昇燃料電池效能的目地。
  管狀二氧化鈦奈米管 (TiNT)具有高表面積以及低維傳導的特性。經由氮摻雜以氮元素取代氧化鈦奈米管中的氧元子,可以有效的提升載體的電子導電度。以四點探針評估導電度由10-7 Scm-1上升至10-1 Scm-1。經由高解析掃描穿透式電子顯微鏡 (HRSTEM) 發現N-TiNT表面有別於未鍛燒之TiNT並呈現許多的皺摺。經由EELS mapping了解氮原子均勻分布於管壁;粉末X光繞射儀則發現TiO2的Anatase相於高溫下逐漸轉成TiN的結晶相變化;光電子能譜儀顯示主要鍵結能為396eV和400eV,並確定氮取代最高可達27.55at%。
  在觸媒製作上,本研究選用通用的鉑釕金屬系統採用醇類還原法進行鉑釕合金的觸媒合成。研究顯示PtRu觸媒粒子,能夠在氮摻雜二氧化鈦奈米管載體上均勻分散達到鉑釕合金最佳化。氮摻雜二氧化鈦奈米管則具有幫助觸媒金屬抵抗一氧化碳使其較不易被毒化而失去活性的能力。使用循環伏安法 (Cyclic Voltammetry, CV) 發現氮摻雜催化甲醇電流密度最佳可達653 A/g Pt、抗CO毒化率 (CO Tolerance) If/Ib值最高可達5.69;此外該載體能與PtRu產生較強的作用力,穩定金屬而不易聚集,並且具有抵抗酸性物質腐蝕的能力,這些特性都將有利於增加甲醇氧化活性與電池的使用壽命。CO脫附 (CO Stripping) 測試化學活性面積 (Electrochemical Surface Area, ECSA) 達104 m2/g;定電壓安培法 (Chronoamperometry, CA) 測試觸媒長時間使用效能有所提升;最後再以單電池MEA進行極化與效能測試發現其效能較目前商用E-TEK來得優越。
摘要(英) This research pertains to the development of novel anodic catalyst of direct methanol fuel cells. The use of nitrogen doped titanium nanotubes improves electronic conductivity and the interaction between metal and support, leading to the improvement of methanol oxidation efficiency and the performance of fuel cell.
  Titania nanotube bears much higher surface area and favorable low dimension conducting property. Through replacing the oxygen atoms on the surface of the TiO2 nanotube by nitrogen, the N-dopped TiNT raised electronic conductivity from 10-7 Scm-1to 10-1 Scm-1. The N-doped TiO2 tube shows higher surface area compared to conventional carbon materials. Using HRTEM observes some wrinkling on the surface differ from un-annealing one. Additional, EELS mapping helps to realize the nitrogen atoms are dispersion well;XRD to realize the morphology and the phase transfer, the phase is transferred from Anatase to TiN follow by temperature increase; The XPS revealed nitrogen content of about 27.55 wt%, and the binding energy is 396eV and 400eV, which confirms the bonding of Ti-N and TiO-N.
  Synthesize the PtRu alloy catalyst is achieved by alcohol reduction method. The study shows the majority of metal nano particle reside on the metal oxide tube surface and the Pt-Ru nanoparticles are well dispersed and indicate, that the metal oxide is effective in preventing the particle aggregation, giving rise to higher electrochemical active surface area. The N-TiNT/C/PtRu exhibited a mass current density of 653 A/g Pt, which is much higher than that of E-TEK (358 A/g Pt) measured under the same condition.;.The If/Ib ratio is higher to 5.69, which mean highly CO tolerance. In addition, present study shows that the nitrogen doped TiO2 as the support for metal nano-particle, nitrogen improve both the electrocatalytic oxidation activity and benefit CO-tolerance. CO-stripping measure the ECSA (Electrochemical Surface Area) can reach to 104 m2/g. The catalyst with N-TiNT support displayed a relatively lower CO to CO2 oxidation potential compare to E-TEK, which implies better CO oxidation capability compared to commercial E-TEK catalysts and the MEA performance is substantially improved.
關鍵字(中) ★ 相變化
★ 氮摻雜二氧化鈦奈米管
★ 陽極觸媒
★ 甲醇氧化活性
關鍵字(英) ★ nitrogen-doped titanium dioxide nanotube
★ phase transfer
★ methanol oxidation activity
★ anodic catalyst
論文目次 摘要I
AbstractIII
誌謝V
目錄VI
圖目錄IX
表目錄XI
第一章 緒論1
1-1新能源的開發1
1-2燃料電池進展與優勢1
1-3燃料電池種類3
1-4當前遭遇問題4
1-5研究動機與目的5
第二章 基本原理與文獻回顧7
2-1直接甲醇燃料電池原理7
2-1.1直接甲醇燃料電池組件說明8
2-1.2薄膜電極組9
2-1.3質子交換膜10
2-1.4燃料電池陽極觸媒11
2-1.5陰極與觸媒13
2-2陽極觸媒材料文獻回顧14
2-2.1陽極觸媒金屬14
2-2.2陽極觸媒載體材料15
2-2.3奈米結構碳材16
2-2.4金屬氧化物18
2-2.5氧化錫20
2-2.6氧化鈦21
2-3觸媒合成方法及性質24
2-3.1含浸法 (impregnation method)24
2-3.2醇類還原法25
2-3.3共沉澱法 (co-precipitation)25
2-4燃料電池極化現象25
第三章 實驗方法29
3-1研究設計與方法29
3-2二氧化鈦奈米管合成31
3-3氮摻雜二氧化鈦奈米管合成32
3-4鉑釕合金觸媒合成32
3-5材料鑑定與分析33
3-5.1 場發射式掃描電子顯微鏡 (FESEM)33
3-5.2 高解析掃描穿透式電子顯微鏡 (HRSTEM)33
3-5.3 X-光粉體繞射儀 (PXRD)33
3-5.4 X光光電子能譜儀 (XPS)34
3-6觸媒電性測試34
3-6.1觸媒漿料配製與電極製備35
3-6.2甲醇氧化活性測試35
3-6.3 CO-stripping 36
3-6.4 Chronoamperometry36
3-7薄膜電極組製作37
3-7.1質子交換膜處理37
3-7.2氣體擴散層電極製作37
3-7.3熱壓條件38
3-7.4 薄膜電極組測試38
3-8實驗藥品39
3-9實驗儀器40
第四章 結果與討論42
4-1氮摻雜二氧化鈦奈米管特性鑑定43
4-1.1表面結構分析43
4-1.2晶體結構分析46
4-1.3鍵結分析48
4-2氮摻雜二氧化鈦合成變因與鑑定51
4-2.1形狀分析52
4-2.2晶體結構分析54
4-2.3鍵結分析56
4-2.4導電度測試59
4-3觸媒結構鑑定59
4-3.1觸媒顆粒大小分析61
4-3.2承載含量比較66
4-3.3合金度分析67
4-4觸媒電化學分析68
4-4.1二氧化鈦與碳黑最佳化比例68
4-4.2觸媒電化學表面積測試71
4-4.3觸媒催化活性測試74
4-4.4觸媒穩定度測試78
4-4.5單電池MEA測試80
第五章 結論與未來展望82
參考文獻84
參考文獻 [1] James Larminie, Andrew Dicks; Fuel Cell Systems Explained 2nd; John Wiley & Sons, Inc., 2003
[2]衣寶廉; 燃料電池-原理與應用; 五南書局; 2005
[3] Lide, D.R., Ed., CRC Handbook of Chemistry and Physics, 75th ed.,CRC press, Boca Raton, FL, pp.5-64; 1995
[4] M. P. Hogarth et al. Platinum Metals Review 2002, 46(4), 146.
[5] R. Greef; R. M. Peat; L. M. Peter; D. Pletcher; J. Robinson In Instrumental methods in Electrochemistry; John Wiley & Sons, Inc.: New York ,1985.
[6] T. Iwasita, Electrochimica Acta 2002, 47, 3663.
[7] Gurau, B.; Viswanathan, R.; Liu, R.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S.; Reddington, E.; Sapienza, A.; Chan, B. C.; Mallouk, T. E.; Sarangapani, S. Journal of Physical Chemistry B 1998, 102(49), 9997-10003.
[8] H. A. Gasteiger; N. M. Markovi ; P. N. Ross Jr.; E. J. Cairns Journal of Physical Chemistry 1994, 98, 617-625.
[9] Handbook of Fuel cells-Fundamentals, Technology and Application, Eds. W. Vielstich, A. Lamm and H.A.Gastegier, John Wiley, Vol. 1, p.42, 2003
[10] M. Watanabe, M. Uchida, S. Motoo, Journal of Electroanalytical Chemistry 1987, 229, 395.
[11] Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, W. Sugimoto, Journal of The Electrochemical Society 2000, 147, 4421.
[12] J.-H. Choi, K.-W. Park, B.-K. Kwon, Y.-E. Sung, Journal of The Electrochemical Society 2003, 150, A973.
[13] R. Venkataraman, H. R. Kunz, J. M. Fenton, Journal of The Electrochemical Society 2003, 150, A278.
[14] B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk, S. Sarangapani, The Journal of Physical Chemistry B 1998, 102, 9997.
[15] Y. Shao, G. Yin, Y. Gao, Journal of Power Sources 2007, 171, 558.
[16] J. Zhou, X. Zhou, X. Sun, R. Li, M. Murphy, Z. Ding, X. Sun, T.-K. Sham, Chemical Physics Letters 2007, 437, 229.
[17] H. Chhina, S. Campbell, O. Kesler, Journal of Power Sources 2006, 161, 893.
[18] Y. Lin, X. Cui, X. Ye, Electrochemistry Communications 2005, 7, 267.
[19] C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Yan, Nano Letters 2003, 4, 345.
[20] C. A. Bessel, K. Laubernds, N. M. Rodriguez, R. T. K. Baker, The Journal of Physical Chemistry B 2001, 105, 1115.
[21] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 2001, 412, 169.
[22] G. Wu, D. Li, C. Dai, D. Wang, N. Li, Langmuir 2008, 24, 3566.
[23]Y. Shao, G. Yin, J. Wang, Y. Gao, P. Shi, Journal of Power Sources 2006, 161, 47.
[24] G. Wu, B.-Q. Xu, Journal of Power Sources 2007, 174, 148.
[25] E. S. Steigerwalt, G. A. Deluga, C. M. Lukehart, The Journal of Physical Chemistry B 2002, 106, 760.
[26] T. Ioroi, Z. Siroma, N. Fujiwara, S.-i. Yamazaki, K. Yasuda, Electrochemistry Communications 2005, 7, 183.
[27] K.-W. Park, K.-S. Ahn, Y.-C. Nah, J.-H. Choi, Y.-E. Sung, The Journal of Physical Chemistry B 2003, 107, 4352.
[28]A. Chen, D. J. La Russa, B. Miller, Langmuir 2004, 20, 9695.
[29] M. S. Saha, R. Li, X. Sun, Electrochemistry Communications 2007, 9, 2229.
[30] Z. Chen, X. Qiu, B. Lu, S. Zhang, W. Zhu, L. Chen, Electrochemistry Communications 2005, 7, 593.
[31] H. M. Villullas, F. I. Mattos-Costa, L. O. S. Bulhoes, The Journal of Physical Chemistry B 2004, 108, 12898.
[32] J. Mann, N. Yao, A. B. Bocarsly, Langmuir 2006, 22, 10432.
[33] S. Shanmugam, A. Gedanken, Small 2007, 3, 1189.
[34] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D. P. Wilkinson, Journal of Power Sources 2006, 155, 95.
[35] T. Matsui, T. Okanishi, K. Fujiwara, K. Tsutsui, R. Kikuchi, T. Takeguchi, K. Eguchi, Science and Technology of Advanced Materials 2006, 7, 524.
[36] M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, Electrochemical and Solid-State Letters 2007, 10, F1.
[37] X. Chen, S. S. Mao, Chemical Reviews 2007, 107, 2891.
[38] Rf. Bartholo and D. R. Frankl, Physical Review, 1969, 187, 828–832
[39] M. Gustavsson, H. Ekström, P. Hanarp, L. Eurenius, G. Lindbergh, E. Olsson, B. Kasemo, Journal of Power Sources 2007, 163, 671.
[40] H. Ekström, B. Wickman, M. Gustavsson, P. Hanarp, L. Eurenius, E. Olsson, G. Lindbergh, Electrochimica Acta 2007, 52, 4239.
[41] M. Hepel, I. Dela, T. Hepel, J. Luo, C. J. Zhong, Electrochimica Acta 2007, 52, 5529.
[42] K.-W. Park, K.-S. Seol, Electrochemistry Communications 2007, 9, 2256.
[43] G. Chen, S. R. Bare, T. E. Mallouk, Journal of The Electrochemical Society 2002, 149, A1092.
[44] B. L. Garcia, R. Fuentes, J. W. Weidner, Electrochemical and Solid-State Letters 2007, 10, B108.
[45] L. Xiong, A. Manthiram, Electrochimica Acta 2004, 49, 4163.
[46] H. Song, X. Qiu, F. Li, W. Zhu, L. Chen, Electrochemistry Communications 2007, 9, 1416.
[47] J.-M. Chen, L. S. Sarma, C.-H. Chen, M.-Y. Cheng, S.-C. Shih, G.-R. Wang, D.-G. Liu, J.-F. Lee, M.-T. Tang, B.-J. Hwang, Journal of Power Sources 2006, 159, 29.
[48] H. Song, X. Qiu, X. Li, F. Li, W. Zhu, L. Chen, Journal of Power Sources 2007, 170, 50.
[49] S. Shanmugam, A. Gabashvili, D. S. Jacob, J. C. Yu, A. Gedanken, Chemistry of Materials 2006, 18, 2275.
[50] M. Wang, D.-j. Guo, H.-l. Li, Journal of Solid State Chemistry 2005, 178, 1996.
[51] Tomoyuki Kawaguchi; Wataru Sugimoto; Yasushi Murakami; Yoshio Takasu; Journal of Catalysis 2005, 229, 176–184
[52] Y. Takasu; T. Kawaguchi; W. Sugimoto; Y. Murakami; Electrochim.Acta 2003, 48 3861.
[53] N. M. Markovi ; P. N. Ross, Jr.; Surface Science Reports 2002, 45, 117-229
[54] Christina Bock, Chantal Paquet, Martin Couillard, Gianluigi A. Botton, Barry R.MacDougall; J. AM. CHEM. SOC. 2004, 126, 8028-8037
[55] Zhaolin Liu, Jim Yang Lee, Weixiang Chen, Ming Han, and Leong Ming Gan; Langmuir 2004, 20, 181-187
[56] Wenzhen Li; Xin Wang; Zhongwei Chen; Mahesh Waje; Yushan Yan; J. Phys. Chem. B 2006, 110, 15353-15358
[57] Wenzhen Li; Xin Wang; Zhongwei Chen; Mahesh Waje; Yushan Yan; Langmuir 2005, 21, 9386-9389
[58] Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z. H.; Sun, G.; Xin, Q; J. Phys. Chem. B, 2003, 107(26), 6292-6299
[59] Hung-Chi Tu, Yung-Yun Wang, Chi-Chao Wan, Kan-Lin Hsueh; Journal of Power Sources 2006, 159, 1105–1114
[60] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269.
[61]C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, The Journal of Physical Chemistry B 2005, 109, 11414.
[62] Levin, E. M. and H. F. McMurdie, America Ceramic Society, Inc , Ohio (1975)
[63] Z. Wang, G. Chen, D. Xia, L. Zhang, Journal of Alloys and Compounds 2008, 450, 148.
[64] K. Jiang, A. Eitan, L. S. Schadler, P. M. Ajayan, R. W. Siegel, N. Grobert, M. Mayne, M. Reyes-Reyes, H. Terrones, M. Terrones, Nano Letters 2003, 3, 275.
[65] Y. Shao, J. Sui, G. Yin, Y. Gao, Applied Catalysis B: Environmental 2008, 79, 89.
[66] A. Sclafani, L. Palmisano, M. Schiavello, The Journal of Physical Chemistry 1990, 94, 829.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明