博碩士論文 93243008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.188.123.174
姓名 吳千舜(Chien-Shun Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 奈米複合離子交換膜的離子與分子多尺度的動態行為之研究
(The Multi-scale Ion and Molecular Dynamic Studies of Nano Composite Proton Exchange Membrane)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 質子交換膜是甲醇燃料電池中的關鍵元件之一,其主要功能是做為固態電解質並傳遞質子。質子交換膜結構中的親/疏水(Hydrophilic/Hydrophobic)特性構建出親水性的水通道(Water channel),在此水通道之中,質子以水合離子(Hydronium ion)的型態進行擴散(Self diffusion)傳導或者質子在氫鍵網絡中以接續式(Relay)的方式通過薄膜而達到傳遞質子的目的。甲醇分子和水分子的極性相接近,甲醇分子也會經由水通道穿過薄膜,導致薄膜有嚴重的甲醇滲透現象(Methanol cross-over)發生。由此可知,薄膜的親水性孔洞尺寸型態、通道連通性將影響質子、水分子的動態行為以及甲醇分子的滲透,進而影響最終薄膜的導電度和甲醇滲透率。
本研究經由製備不同孔隙度、不同官能基化程度和不同微相區紋理(Morphology)的高分子質子交換膜材料,深入討論質子、水分子的動態行為、甲醇分子的滲透及開發新的傳導機制。其目標在於製備恰當的微相結構型態開發適用於甲醇燃料電池和高溫低濕下操作的新穎薄膜材料。因此本研究薄膜材料的製作方式採取(1) 半互穿網路聚合物結構(semi-Interpenetrating Polymer Network, semi-IPN)薄膜 (2) 有機/無機奈米結構質子傳導膜方式製作,並將製備出來的薄膜材料利用電子顯微鏡(Electron microscopy)、交流阻抗分析儀(AC impedance)和固態核磁共振(Solid state NMR)等重要檢測方法來進行微結構型態、質子導電度、水分子動態行為以及甲醇滲透率等重要性質分析與討論。
在semi-IPN系統中運用具高支鏈結構(Hyper branch architecture)雙馬來醯亞胺寡合物(Bismaleimide oligomer) (mBMI)作為結構基質,穿插入於磺酸化聚二醚酮(sulfonated Poly ether ether ketone, sPEEK)高分子內,築構成半互穿網路聚合物結構。實驗中使用mBMI(30) [BMI:mBMI = 70 mol%:30 mol%]和mBMI(98) [BMI:mBMI = 2 mol%:98 mol%]兩種不同溶液製備sPEEK-IPN薄膜。溶液中BMI單體數量的多寡影響semi-IPN結構的交聯程度,所以mBMI(30)與sPEEK高分子形成緻密的semi-IPN結構 (Dense semi-IPN structure),而sPEEK/mBMI(98)薄膜則是呈現比較鬆散的semi-IPN結構 (Loose semi-IPN)。結果顯示,此物理交聯方式不僅增加薄膜的抗膨潤能力和降低甲醇滲透率之外,薄膜在室溫下的導電度還仍維持在10-2 S/cm以上,其中sPEEK/15% mBMI(98)薄膜具有最高的C/P比率(Conductivity/Permeability ratio)。另一方面,物理交聯改變了薄膜親水性通道的型態,進而影響質子和水分子在水通道內的運動性。相較於sPEEK薄膜,Semi-IPN薄膜在高含水量狀態時,因為交聯效應而降低了水通道的尺寸,使得質子和水分子在水通道內的運動性下降。我們也發現交聯程度亦會影響親水性通道的尺寸,緻密semi-IPN(Dense semi-IPN)薄膜因為其交聯程度高,水通道的尺寸變的更窄,所以質子和水分子在緻密semi-IPN薄膜中的運動性會低於在鬆散semi-IPN(Loose semi-IPN)薄膜。因此對於semi-IPN薄膜而言,薄膜的導電度受到離子交換容量(IEC)影響,但是semi-IPN薄膜的親水性通道型態亦會減低最終的導電度。薄膜在低含水量狀態時,磺酸根和水分子會在孔洞表面構建出一連續性的氫鍵網絡,所以質子主要的傳遞路徑就在孔洞表面所構建出來的氫鍵網絡中做接力賽的傳遞。特別在鬆散semi-IPN薄膜中,mBMI結構的存在提供了另一個氫鍵網絡幫助質子傳導,但在緻密semi-IPN薄膜中卻未發現此現象。
在第二個部分的sPEEK/表面鹼基化二氧化矽(SiO2)複合膜中,是原位聚合(In-Situ Polymerization)的方法製備出有機/無機之質子交換薄膜,亦即在sPEEK高分子溶液中聚合生長出具有鹼性官能基的奈米添加物無機奈米粒子,並藉由選用不同鹼度的鹼性官能基矽烷(Amine, Pyrrolidinone 和 Imidazole)以及鹼基數量,可製備並調控出不同顆粒大小的奈米粒子。結果顯示,具有鹼性官能基的無機奈米粒子均勻分散後,其表面鹼性官能基的修飾,可增加與酸性高分子間的作用力,而抑制薄膜在甲醇水溶液中的過度膨潤現象。較強的鹼性官能基(如:Imidazole)雖可大幅降低薄膜的膨潤性和甲醇滲透率,但也因為鹼性太強而與sPEEK的磺酸根產生酸/鹼中和現象,導致薄膜導電度下降至4×10-3 S/cm;最佳的薄膜為使用弱鹼的50phr PyT-H薄膜( Py silane:TEOS=4:1)其甲醇滲透率不僅大幅下降,而且導電度還維持在2×10-2 S/cm以上, C/P比率也是全部薄膜之中最高的。酸/鹼作用力影響的另一個層面為親水性通道的型態尺寸,研究顯示,水通道的尺寸受到鹼性官能基矽烷的鹼度和鹼性官能基數量兩者所影響,亦即較強的鹼性官能基或較多的官能基數量皆會增強與sPEEK之間的酸/鹼作用力,降低水通道尺寸,導致水通道內的質子和水分子的運動性下降。研究中也同時發現因為水通道變窄使得甲醇滲透率也降低。
一般酸性電解質高分子薄膜(如:sPEEK)在高溫下因為容易脫水(Dehydration)而導致質子導電度下降,增加電池中的薄膜內電阻。而薄膜中添加具質子導電性的無機奈米粒子除了可以增加保水性之外,亦可增加薄膜的質子導電度。因此本研究第三個部分是將二氧化鈦奈米管(TiO2 nano tube, TNT)表面做磺酸官能基修飾,再與sPEEK高分子進行混摻,形成有機/無機奈米複合薄膜。由於具有酸根官能基的奈米粒子會與質子傳導高分子作用,形成高度相容之均質體,無機奈米粒子可高度均勻分散於高分子薄膜中因而輕易解決傳統技術中的相分離問題。結果顯示,薄膜中添加磺酸官能基化的二氧化鈦奈米管(sTNT)後,薄膜在高溫下的保水能力以及質子導電度皆大幅提升。其中,sPEEK/5% sTNT複合薄膜在100℃、60% 相對濕度狀態下,質子導電度高達10-2 S/cm以上。在微結構型態(Morphology)和水分子動態行為研究中,發現複合薄膜在低含水量狀態時,水分子不只分佈於sPEEK的磺酸根上,水分子亦在sTNT表面而且水分子在管子表面做快速的運動,代表sTNT固體酸表面提供了連續的質子暫存之官能基(如氫鍵)形成有效的接力式之質子傳遞路徑。在低濕度下sPEEK/sTNT薄膜展現極高的質子導電度和低質子傳遞活化能(Activation energy, Eaσ)。
摘要(英) Proton exchange membrane is a key component for direct methanol fuel cell (DMFC), as it serves to transport protons between the two electrodes. As widely accepted, proton conduction is achieved by the relay of charged ion via hydrogen bonding network, or by the self diffusion of the hydronium within the confined water channel and usually water-swollen membrane. On the other hand, the methanol can permeate through the water channels due to the polarity of methanol is similar to water. Hence water channel morphology, proton, water and methanol transport properties dictate the proton conductivity and methanol permeability of fuel cell membranes.
In present study, the proton exchange membranes with different pore size, surface functional group and morphology were prepared. This proposal disclose the design of series of proton exchange membrane bearing suitable phase separated nano-structures arranged in long range order as the plausible candidate for novel proton conducting membrane to operate in DMFC and high temperature fuel cell. Two designs with nano-structures are explored: (1) semi-Interpenetrating Polymer Network, semi-IPN (2) Organic/inorganic composite with long range ordered inorganic nano domain. The electron microscopy, AC impedance and solid state NMR methods were used in this research, in order to understand the relationships between channel morphology, ion/molecular dynamics and proton conductivity.
By using an in-situ polymerization scheme, bismaleimide oligomers (mBMI) and bismaleimide (BMI) monomers forms interpenetrating network structure which encapsulated sulfonated poly ether ether ketone (sPEEK) polymer matrix. Different curing conditions on the two sPEEK samples containing BMI monomer and mBMI mole ratios of 70:30 (mBMI(30)) and 2:98 (mBMI(98)) are present. As the amount of BMI monomer increases, the branched structure and their degree of entanglement with sPEEK polymer matrix also increase. More rigid and more compact membrane is found in the case of mBMI(30)[dense semi-IPN]. In contrast, relatively loose entangled network is found for mBMI(98) sample [loose semi-IPN] where the mBMI unit remains far apart and mostly un-connected, until high concentration of mBMI(98) is present. The results shows physical cross-linking with highly branched mBMI is effective in reducing water uptake, lower methanol permeability with reduced sPEEK membrane swelling. All membranes displayed fair proton conductivity above 10-2 S/cm at room temperature. The best membrane is arrived with 15% mBMI(98), where high C/P ratio (Conductivity/Permeability ratio) can be established. In comparison, the water channel dimension in sPEEK-IPN system is strongly dependent on the cross-linking reaction condition. Compared to pure sPEEK, the proton mobility and water diffusion in all sPEEK-IPN membranes are reduced due to the presence of semi-IPN structure which leads to further constrained water channel. We also observed that proton mobility and water diffusion in dense sPEEK-IPN membranes are smaller than in loose sPEEK-IPN membranes because the water channel dimension is strongly constrained by densely semi-IPN structure. On the other hand, at low water uptake, the water migration activation energy becomes much lower than either the bulk value or that of the fully saturated sample. In this case, the water and proton motion is no-longer controlled by the viscosity of the medium but determined by the efficiency of relay motion by interconnected hydrogen bonding network between the sulfonated group and the residual water or between the imide group of mBMI and the retained water. The fact that loose sPEEK-IPN membrane shows the most narrow line width (1H NMR) and the lowest Eaσ in proton conductivity indicated there are cooperative activity between sPEEK and the imide. This mechanism is absent in the case of tight-sPEEK-IPN membrane.
The sPEEK/functionalized SiO2 nano-composite membranes were prepared by using an in-situ polymerization scheme. Present method utilizes functionalized silanes as the precursor to form a homogeneous solution with the polymer host. The alkalinity of the functional groups (Amine, Pyrrolidinone, and Imidazole) at the silane chain ends governs the degrees of association with the acidic polymer matrix, and changed the size and distribution of the surface functionalized silica in the membrane. As a result of tailoring the water channel dimensions through maneuvering both the alkalinity and amounts of base functional group on the SiO2 surface, membranes morphology, and acid group distribution, the water and methanol solvent uptake and methanol permeability are effectively reduced with slightly sacrificing the proton conductivity. The best membrane is arrived with 50phr silica (composed of Pyrrolidinone-silane : TEOS at 4:1 mole ratio), where high proton conductivity (2×10 2 S/cm), good membrane film property, lowest methanol permeability (4×10-7 cm2/s, in 50 vol% methanol solution) and high C/P ratio can all be established. On the other hand, water channel dimension is strongly dependent upon both the alkalinity of functional groups (Amine, pyrrolidinone and Imidazole) at the silane chain ends or the fraction of base functionalized on the SiO2 surface. In the case of the stronger base attached at silane chain ends, the membranes are found to yield the smallest SiO2 particle size and tightest water channel compared to that in pure sPEEK. This is due to the stronger acid/base interaction between -SO3H of sPEEK and base functional group on the SiO2 surface. Since the presence of stronger acid/base interaction lead to further constrained water channel, the mobility of proton and water are reduced when membranes are in fully hydrated state. In contrast, the membrane with weak base at silane chain ends gives the largest SiO2 particle size and wider water channel, thus the proton and water are exhibiting rapid motion.
These studies disclosed two membrane architecting designs to reach good balance between high conductivity, minimal water and methanol permeability. The key appears to lie on the water channel morphology.
The output power of PEMFC using state of art proton exchange membrane is dramatically reduced due to increase of internal resistance from the loss of water from these membranes above 80℃. Sulfonated TiO2 nano-tube (sTNT) is a proton conductor and display excellent water retention capability which preserved certain amount of water in temperature higher than the normal boiling temperature. Hence the nano-composite membranes were prepared from sPEEK and physically blended with various amounts of sTNT. The results show the proton conductivity of the membrane containing sTNT is higher than pristine sPEEK membrane. This is especially the case with 5wt% sTNT composite, where the most homogeneous morphology is observed. For sPEEK/5wt% sTNT membrane the proton conductivity reached above 10-2 S/cm at 100℃, 60%RH. In morphology and water dynamic studies, at low water content condition, we found the water is exhibiting rapid motion on the surface of TiO2 tube. This is the reason that sPEEK/sTNT display excellent proton conductivity and the smaller activation energy (Eaσ) at low humidity condition.
關鍵字(中) ★ 微相區紋理
★ 質子與水分子動態行為
★ 燃料電池質子傳導膜
關鍵字(英) ★ Morphology
★ proton and water dynamics
★ fuel cell membrane
論文目次 中文摘要................................................... I
英文摘要.................................................. IV
目錄................................................... VIII
表目錄 ................................................ XIII
圖目錄.................................................. XIV
第一章 緒論................................................ 1
1-1 前言.................................................. 1
1-2 燃料電池原理及組成元件................................... 1
1-3 質子交換膜之關鍵問題..................................... 3
1-4 研究動機與目的.......................................... 4
第二章 文獻回顧............................................. 9
2-1 直接甲醇燃料電池薄膜 .................................... 9
2-1-1 化學交聯薄膜.......................................... 9
2-1-2 物理交聯薄膜......................................... 12
2-1-3 有機/無機薄膜 ....................................... 14
2-2 高溫燃料電池薄膜........................................ 16
2-2-1 有機/無機高溫薄膜..................................... 16
2-2-2 高分子/小分子化合物薄膜................................ 18
2-3 質子導電度的影響因子.................................... 20
2-4 質子傳遞機制........................................... 21
2-5 微結構型態(Morphology)的影響因素........................ 24
2-5-1 化學結構 ........................................... 26
2-5-2 團聯共聚高分子、接技型共聚高分子和多段式共聚物............. 27
2-5-3 磺酸化程度.......................................... 29
2-5-4 交聯效應............................................ 29
2-5-5 有機/無機結構薄膜..................................... 30
2-5-6 鑄膜方法............................................ 30
2-5-7 水含量、溫度及平衡時間因素............................. 32
2-6 質子和水分子的動態行為.................................. 33
2-6-1 不同質子交換膜材料中的質子與水分子動態行為................ 34
2-6-2 孔洞尺寸因素........................................ 38
2-6-3 水含量因素.......................................... 39
2-6-4 溫度、離子交換容量和離子種類因素........................ 40
2-7 薄膜的甲醇滲透及膨潤行為................................. 42
第三章 弛緩行為與分子運動性
3-1 分子運動引起弛緩........................................ 44
3-2 分子運動關聯時間與活化能................................. 50
第四章 實驗方法............................................ 53
4-1 實驗藥品.............................................. 53
4-2 聚二醚酮 (Polyether ether ketone; PEEK)的磺酸化程序..... 55
4-3 有機/無機奈米複合質子交換薄膜製備 ....................... 55
4-3-1 磺酸化聚二醚酮 /磺酸化二氧化鈦奈米管薄膜................. 55
4-3-2 磺酸化聚二醚酮 /表面鹼基化二氧化矽薄膜................... 57
4-4 半互穿網路聚合物(Semi-IPN)薄膜製備....................... 58
4-5 離子交換容量(Ion Exchange Capacity, IEC)............... 59
4-6 變溫及變濕的質子導電度量測............................... 59
4-7 水和甲醇溶劑吸附量(Water and Solvent uptake)............ 60
4-8 甲醇滲透率(Methanol Permeability)..................... 60
4-9 固態核磁共振(solid state NMR)......................... 61
4-9-1 交叉極化 (Cross Polarization, CP) ................. 61
4-9-2 弛緩(Relaxation) 實驗.............................. 62
4-9-3 變溫擴散實驗(VT-diffusion).......................... 64
4-10 薄膜截面及離子通道型態分析 ............................. 65
4-10-1 高解析度場發射掃描電子顯微鏡( High-Resolution Scanning Electron Microscope, FE-SEM)............................ 65
4-10-2 穿透式電子顯微鏡(Transmission electron microscopy,TEM) ........................................................ 66
4-10-3 原子力顯微鏡(Atomic Force Microscope, AFM)......... 66
4-11 微差掃瞄熱分析儀(Differential Scanning Calorimeter, DSC) ........................................................ 67
4-12 甲醇燃料電池效能驗證.................................. 68
4-12-1 膜電極組的製作(membrane electrode assembly, MEA).... 68
4-12-2 膜電極組的活化與效能測量 ............................. 68
第五章 磺酸化聚二醚酮(sPEEK) /高支鏈結構雙馬來醯亞胺(mBMI)薄膜之研究
5-1 前言................................................. 69
5-2 結構性質鑑定(Structure characterization)............... 71
5-2-1 CP/MAS 13C NMR..................................... 71
5-2-2 微差掃瞄熱卡計(DSC)分析............................... 72
5-3 甲醇滲透行為(Methanol permeation)...................... 74
5-4 質子導電性分析(Proton conducivity)..................... 75
5-5 微結構型態(Morphology) ............................... 76
5-6 質子和水分子的動態行為(Proton and Water dynamics) ....... 77
5-6-1 飽和水含量狀態 ...................................... 78
5-6-2 未飽和水含量狀態...................................... 79
5-6-2-1 1H NMR 光譜...................................... 79
5-6-2-2 自旋晶格弛緩時間 .................................. 83
5-6-3 質子導電度活化能..................................... 85
5-7 直接甲醇燃料電池效能分析(DMFC performance)............... 87
5-8 結論................................................. 89
第六章 磺酸化聚二醚酮 (sPEEK) /表面鹼官能基化二氧化矽(SiO2)奈米複合薄膜之研究
6-1 前言 ............................................... 114
6-2 結構性質鑑定(Structure characterization).............. 116
6-2-1 29Si MAS Solid State NMR......................... 116
6-2-2 電子顯微鏡分析...................................... 117
6-2-3 微差掃瞄熱卡計(DSC)分析.............................. 119
6-3 微結構型態(Morphology)............................... 120
6-4 甲醇滲透行為(Methanol permeation)..................... 122
6-5 質子導電性分析(Proton conducivity).................... 123
6-6 質子和水分子的動態行為(Proton and Water dynamics)....... 125
6-6-1 1H NMR 光譜....................................... 125
6-6-2 自旋晶格弛緩時間..................................... 127
6-6-3 水分子擴散係數與質子導電度活化能........................ 128
6-7 直接甲醇燃料電池效能分析(DMFC performance).............. 130
6-8 結論................................................ 132
第七章 磺酸化聚二醚酮 (sPEEK) / 磺酸化二氧化鈦奈米管(sTNT)奈米複合薄膜之研究
7-1 前言................................................ 158
7-2 結構性質鑑定(Structure characterization).............. 160
7-2-1 磺酸化二氧化鈦奈米管的結構鑑定......................... 160
7-2-2 sPEEK/sTNT 薄膜的DSC分析........................... 160
7-2-3 sPEEK/sTNT 薄膜的表面型態分析........................ 161
7-3 保水性分析(Water retention).......................... 162
7-4 微結構型態(Morphology)............................... 163
7-5 質子和水分子的動態行為(Proton and Water dynamics)....... 163
7-5-1 1H NMR 光譜....................................... 160
7-5-2 自旋晶格弛緩時間..................................... 165
7-6 質子導電性分析(Proton conducivity).................... 166
7-7 結論................................................ 168
第八章 總結論............................................. 178
第九章 參考文獻........................................... 180
參考文獻 [1] Hogarth, W.H.J.; Diniz da Costa, J.C.; Lu, G.Q. J. Power Sources 2005, 142, 223.
[2] Gu, S.; He, G.; Wu, X.; Guo, Y.; Liu, H.; Peng, L.; Xiao, G. J. Membr. Sci. 2008, 312, 48.
[3] Kerres, J. J. Membr. Sci. 2001, 185, 3.
[4] Kerres, J.; Cui, W.; Disson, R.; Neubrand, W. J. Membr. Sci. 1998, 139, 211.
[5] Mikhailenko, S.D.; Wang, K.; Kaliaguine, S.; Robertson, G.P.; Guiver, M.D. J. Membr.
Sci 2004, 233, 93.
[6] Mikhailenko, S.D.; Robertson, G.P.; Guiver, M.D.; Kaliaguine, S. J. Membr. Sci. 2006,285, 306.
[7] Won, J.; Park, H.H.; Kim, Y.J.; Choi, S.W.; Ha, H.Y.; OH, I.H.; Kim, H.S.; Kang, Y.S.;Ihn, K.J. Marcomolecules 2003 , 36 , 3228.
[8] Suzuki, M.; Yoshida, T.; Kobayashi, S.; Koyama, T.; Kimura M.; Hanabusa, K.; Shirai, H.
Phys. Chem. Chem. Phys. 1999, 1, 2749.
[9] Rhim, J.W.; Park, H.B.; Lee, C.S.; Jun, J.H.; Kim, D.S.; Lee, Y.M. J. Membr. Sci. 2004,238, 143.
[10] Jorissen, L.; Gogel, V.; Kerres, J.; Garche, J. J. Power Sources 2002, 105, 267.
[11] Kerres. J.; Zhang, W.; Ullrich, A.; Tang, C.M.; Hein, M.; Gogel, V.; Frey, T.; Jorissen, L. Desalination 2002, 147, 173.
[12] Kerres, J.; Ullrich, A.; Meier, F.; Haring, T. Solid State Ionics 1999, 125, 243.
[13] Pasupathi, S.; Ji, S.; Bladergroen, B.J.; Linkov,V. International journal of hydrogen energy 2008, 33, 3132.
[14] Cui, W.; Kerres, J.; Eigenberger, G. Separation and Purification Technology 1998, 14,145.
[15] Li, X.; Chen, D.; Xu, D.; Zhao, C.; Wang, Z.; Lu, H.; Na, H. J. Membr. Sci. 2006, 275,134.
[16] Fu, R.Q.; Hong, L.; Lee, J.Y. Fuel Cells 2008, 8(1), 52.
[17] Qiao, J.; Ikesaka, S.; Saito, M.; Kuwano, J.; Okada, T. Electrochemistry Communications 2007, 9, 1945.
[18] Seo, J.; Jang, W.; Lee, S.; Han, H. Polymer Degradation and Stability 2008, 93, 298.
[19] Matsuguchi, M.; Takahashi, H. J. Membr. Sci. 2006, 281, 707.
[20] Cho, K.Y.; Jung, H.Y.; Shin, S.S.; Choi, N.S.; Sung, S.J.; Park, J.K.; Choi, J.H.; Park,K.W.; Sung, Y.E. Electrochimica Acta 2004, 50, 589.
[21] Karthikeyan, C.S.; Nunes, S. P.; Prado, L.A.S.A.; Ponce, M.L., Silva, H.; Ruffmann, B.;Schulte, K. J. Membr. Sci. 2005, 254, 139.
[22] Nunes, S.P.; Ruffmann, B.; Rikowski, E.; Vetter, S.; Richau, K. J. Membr. Sci. 2002,203, 215.
[23] Lee, C.H.; Park, H.B.; Park, C.H.; Lee, S.Y.; Kim, J.Y., James, E.; McGrath; Lee, Y.M.;J. Power Sources 2010, 195, 1325.
[24] Zhang, H.; Fan, X.; Zhang, J.; Zhou, Z. Solid State Ionics 2008, 179, 1409.
[25] Carbone, A.; Pedicini, R.; Sacca, A.; Gatto, I.; Passalacqua, E. J. Power Sources 2008,
178, 661.
[26] Karthikeyan, C.S.; Nunes, S.P.; Prado, L.A.S.A.; Ponce, M.L.; Silva H.; Ruffmann, B.;Schulte, K. J. Membr. Sci. 2005, 254, 139.
[27] Kim,Y. K.; Lee, J. S.; Rhee, C. H.; Kim, H. K.; Chang, H. J. Power Sources 2006, 162,180.
[28] Su, Y. H.; Liu, Y. L.; Sun, Y. M.; Lai, J. Y.; Wang, D. M.; Gao, Y.; Liu, B.; Guiver, M.D. J. Membr. Sci. 2007, 296, 21.
[29] Jin, Y. G.; Qiao, S. Z.; Xu, Z.P.; Lu, G. Q. J. Phys. Chem. C 2009, 113, 3157.
[30] Yamada, M.; Li, D.; Honma, I.; Zhou, H. J. Am. Chem. Soc. 2005, 127, 13092.
[31] Pereira, F.; Valle, K.; Belleville, P.; Morin, A.; Lambert, S.; Sanchez, C. Chem. Mater.2008, 20, 1710.
[32] Bi, C.; Zhang, H.; Zhang, Y.; Zhu, X.; Ma, Y.; Dai, H.; Xiao, S. J. Power Sources 2008,184, 197.
[33] Navarra, M.A.; Croce, F.; Scrosati, B. J. Mater. Chem. 2007, 17, 3210.
[34] Honma, M. Y. I. J. Phys. Chem. B 2006, 110, 20486.
[35] Wang, J.; Zhao, Y.; Hou, W.; Geng, J.; Xiao, L.; Wu, H.; Jiang, Z. J. Power Sources 2010, 195, 1015.
[36] Marani D.; D’Epifanio, A.; Traversa, E.; Miyayama, M.; Licoccia, S. Chem.Mater. 2010, 22 (3), 1126.
[37] Yamada, M.; Honma, I. J. Phys. Chem. B 2006, 110, 20486.
[38] Bi, C.; Zhang, H.; Zhang, Y.; Zhu, X.; Ma, Y.; Dai, H.; Xiao, S. J. Power Sources 2008,
184, 197.
[39] Gomes, D.; Marschall, R.; Nunces, S.P.; Wark, M. J. Membr. Sci. 2008, 322, 406.
[40] Tomita, A.; Kajiyama, N.; Kamiya, T.; Nagao, M.; Hibino, T. J. Electrochem. Soc.2007, 154 (12), 1265.
[41] Jin, Y.; Fujiwara, K.; Hibino, T. 217th ECS Meeting 2010, 1395.
[42] Narayanan, S. R.; Yen, S. P.; Liu, L.; Greenbaum, S. G. J. Phys. Chem. B 2006, 110,3942.
[43] Bouchet, R.; Siebert, E. Solid State Ionics 1999, 118, 287.
[44] Hughes, C.E.; Haufe, S.; Angerstein, B.; Kalim, R.; Ma1hr, U.; Reiche, A.; Baldus, M.J. Phys. Chem. B 2004, 108, 13626.
[45] http://www.advent-energy.com/products.html
[46] Avgouropoulos, G.; Papavasiliou, J.; Daletou, M. K. ; Kallitsis, J. K. Applied Catalysis B:Environmental 2009, 90, 628.
[47] Yu, S.; Xiao, L.; Benicewicz, B. C. FUEL CELLS 2008, 8, 165.
[48] Doyle, M.; Choi, S.K.; Proulx, G. J. Electrochem. Soc. 2000, 147, 34.
[49] Lin, B.; Cheng, S.; Qiu, L.; Yan, F.; Shang, S.; Lu, J. Chem. Mater. 2010, 22(5), 1807.
[50] Duan, X.; Scheiner, S. J. Mol. Struct.1992, 270, 173.
[51] Laurs, N.; Bopp, P.; Bunsenges, B. Phys. Chem.1993, 97, 982.
[52] Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.; Ulstrup, J.; Walbran, S. J. Phys.Chem. B 2001, 105, 3646.
[53] Eikerling, M.; Kornyshev, A. A. J. Electroanal. Chem. 2001, 502, 1.
[54] Choi, P.; Jalani, N. H.; Datta, R. J. Electrochem. Soc. 2005, 152(3), 123.
[55] Devanathan, R. Energy Environ. Sci. 2008, 1, 101.
[56] Komarov, P.V.; Veselov, I. N.; Chu, P. P.; Khalatur, P. G.; Khokhlov, A. R. Chemical Physics Letters 2010, 487, 291.
[57] Tana, N.; Xiao, G.; Yan, D. Chem. Mater. 2010, 22 (3),1022.
[58] Lin, H. L.; Yu, T. L.; Han, F. H. J. Polymer Research 2006, 13, 379.
[59] Ghassemi, H.; McGrath, J. E. Polymer 2004, 45, 5847.
[60] Yin, Y.; Yamada, O.; Suto, Y.; Mishima, T.; Tanaka, K.; Kita, H.; Okamoto, K. J. Polym.Sci., Part A: Polym. Chem. 2005, 43, 1545.
[61] Hu, Z.; Yin, Y.; Chen,S.; Yamada,O.; Tanaka, K.; Kita, H.; Okamoto, K. J. Polym. Sci.Part A: Polym. Chem. 2006, 44, 2862.
[62] Pang, J.; Zhang, H.; Li, X.; Wang, L.; Liu, B.; Jiang, Z. J. Memr. Sci. 2008, 318, 271.
[63] Brandell, D.; Karo, J.; Liivat, A.; Thomas, J.O. J. Mol. Model. 2007, 13, 1039.
[64] Yang, Y.; Shi, Z.; Holdcroft, S. Macromolecules 2004, 37, 1678.
[65] Perrin, R.; Elomaa, M.; Jannasch, P. Macromolecules 2009, 42, 5146.
[66] Norsten, T. B.; Guiver, M. D.; Murphy, J.; Astill, T.; Navessin, T.; Holdcroft, S.;Frankamp, B. L.; Rotello, V. M.; Ding, J. Adv. Funct. Mater. 2006 , 16 , 1814.
[67] Timothy, J.; Peckham, J. S.; Holdcroft, S. J. Phys. Chem. B 2008, 112, 2848.
[68] Kim, B.; Kim, J.; Jung, B. J. Membr. Sci. 2005, 250, 175.
[69] Higashihara,T.; Matsumoto, K.; Ueda, M. Polymer 2009, 50, 5341.
[70] Einsla, M. L.; Kim, Y. S.; Hawley, M.; Lee, H. S.; McGrath, J. E.; Liu, B.; Guiver, M. D.;
Pivovar, B.S. Chem. Mater. 2008, 20, 5636.
[71] Bai, Z.; Yoonessi, M.; Juhl, S. B.; Drummy, L. F.; Durstock, M. F.; Dang, T. D.Macromolecules 2008, 41, 9483.
[72] Li, Y.; Roy, A.; Badami, A. S.; Hill, M.; Yang, J.; Dunn, S.; McGrath, J. E. J. Power Sources 2007, 172, 30.
[73] Li, X.; Zhao, C.; Lu, H.; Wang, Z.; Na, H. Polymer 2005, 46, 5820.
[74] Zhang, H.; Pang, J. H.; Wang, D.; Li, A.; Li, X.; Jiang, Z. J. Membr. Sci. 2005, 264, 56.
[75] Bae, B.; Miyatake, K.; Watanabe, M. Macromolecules 2009, 42 (6), 1873.
[76] Matsuguchi, M.; Takahashi, H. J. Membr. Sci. 2006, 281, 707.
[77] Won, J.; Park, H. H.; Kim, Y. J.; Choi, S. W.; Ha, H. Y.; Oh, I. H.; Kim, H. S.; Kang, Y.S.; Ihn, K. J. Macromolecules 2003, 36, 3228.
[78] Mauritz, K. A. Materials Science and Engineering 1998, C6, 21.
[79] Tang, H. L. Pan, M. J. Phys. Chem. C 2008, 112, 11556.
[80] So, S.Y.; Hong, Y. T.; Kim, S. C.; Lee, S. Y. J. Membr. Sci. 2010, 346, 131.
[81] Ladewig, B. P.; Knott, R. B.; Hill, A. J.; Riches, J. D.; White, J. W.; Martin, D. J.; Lu,G.Q. Chem. Mater. 2007, 19, 2372.
[82] Pereira, F.; Valle, K.; Belleville, P.; Morin, A.; Lambert, S.; Sanchez, C. Chem. Mater.2008, 20, 1710.
[83] Joo, S. H.; Pak, C.; Kim, E. A.; Lee, Y. H.; Chang, H.; Seung, D.; Choi, Y. S.; Park, J. B.;Kim, T. K. J. Power Sources 2008, 180, 63.
[84] Matos, B. R.; Santiago, E. I.; Fonseca, F. C.; Linardi, M.; Lavayen, V.; Lacerda, R. G.;Ladeira, L. O.; Ferlauto, A. S. J. Electrochem. Soc. 2007, 154(12),1358.
[85] Rhee, C. H.; Kim, Y.; Lee, J. S.; Kim, H. K.; Chang, H. J. Power Sources 2006, 159,1015.
[86] Ma, C. H.; Yu, T. L.; Lin, H. L.; Huang, Y. T.; Chen, Y. L.; Jeng, U. S.; Lai, Y. H.; Sun, Y.S. Polymer 2009, 50, 1764.
[87] Gasa, J. V.; Weiss, R. A.; Shaw, M. T. J. Membr. Sci. 2008, 320, 215.
[88] Lin, H. L.; Yu, T. L.; Han, F. H. J. Polymer Research 2006, 13, 379.
[89] Wei, X.; Yates, M. Z. J. Power Sources 2010, 195, 736.
[90] Park, M. J.; Balsara, N. P. Macromolecules 2010, 43, 292.
[91] Gross, M.; Maier, G.; Fuller, T.; MacKinnon, S.; Gittleman, C. 217th ECS meeting 2010,1394.
[92] Elabd, Y. A.; Napadensky, E.; Sloan, J. M.; Crawford, D. M.; Walker, C. W. J. Membr.Sci. 2003, 217, 227.
[93] Deluca, N. W.; Elabd, Y. A. J. Poly. Sci. 2006, 44, 2201.
[94] Mauritz, K. A.; Moore, R. B. Chem. Rev. 2004, 104, 4535.
[95] Komarov, P. V.; Veselov, I. N.; Chu, P. P.; Khalatur, P. G.; Khokhlov, A.R. Chemical Physics Letters 2010, 487, 291.
[96] Einsla, M. L.; Kim, Y. S.; Hawley, M.; Lee, H. S.; McGrath, J. E.; Liu, B.; Guiver, M. D.;Pivovar, B. S. Chem. Mater. 2008, 20, 5636.
[97] Kim, M. H.; Glinka, C. J.; Grot, S. A.; Grot, W. G. Macromolecules 2006, 39, 4775.
[98] Kreuer, K. D. J. Membr. Sci. 2001, 185, 29.
[99] de Araujo, C. C.; Kreuer, K. D.; Schuster, M.; Portale, G.; Gebel, G.; Maier, J. Phys.Chem. Chem. Phys. 2009, 11, 3305.
[100] Kreuer, K. D.; Schuster, M.; Obliers, B.; Diat, O.; Traub, U.; Fuchs, A.; Klock, U.;Paddison, S. J.; Maier J. J.Power Sources 2008, 178, 499.
[101] Brandell, D.; Karo, J.; Liivat, A.; Thomas, J. O. J. Mol. Model. 2007, 13, 1039.
[102] Nicotera, I.; Coppola, L.; Rossi, C. O.; Youssry M.; Ranieri, G. A. J. Phys. Chem. B 2009, 113, 13935.
[103] Ye, G.; Hayden, C. A.; Goward, G. R.; Macromolecules 2007, 40, 1529.
[104] Horan, J. L.; Genupur, A.; Ren, H.; Sikora, B. J.; Kuo, M. C.; Meng, F.; Dec, S. F.;
Haugen, G. M.; Yandrasits, M. A.; Hamrock, S. J.; Frey, M. H.; Herring, A. M.Chem. Sus. Chem. 2009, 2, 226 .
[105] Colicchio, I.; Demco, D. E.; Baias, M.; Keul, H.; Moeller, M. J. Membr. Sci. 2009, 337,125.
[106] Zhong, J.; Wen, W. Y.; Jones A. A. Macromolecules 2003, 36, 6430.
[107] Shen, H.; Maekawa, H.; Kawamura, J.; Yamamura, T. Solid State Ionics 2006, 177,2403.
[108] Daiko, Y.; Kasuga, T.; Nogami, M. Chem. Mater. 2002, 14, 4624.
[109] MacMillan, B.; Sharp, A. R.; Armstrong R. L. Polymer 1999, 40, 2471.
[110] Zawodzinski, T. A.; Neeman, M.; Sillerud, L. O.; Gottesfeld, S. J. Phys. Chem. 1991, 95,6040.
[111] Ye, G.; Janzen, N.; Goward, G. R. Macromolecules 2006, 39, 3283.
[112] Siu, A.; Schmeisser, J.; Holdcroft, S. J. Phys. Chem. B 2006, 12, 6072.
[113] Saito, M, Hayamizu, K.; Okada, T. J. Phys. Chem. B 2005, 109, 3112.
[114] Nicotera, I.; Coppola, L.; Rossi, C. O.; Youssry, M.; Ranieri, G. A. J. Phys. Chem. B 2009, 113, 13935.
[115] Peckham, T. J.; Schmeisser, J.; Holdcroft, S. J. Phys. Chem. B 2008, 112, 2848.
[116] Hickner, M. A.; Pivovar, B. S. Fuel cells 2005, 5, 213.
[117] Every, H. A.; Hickner, M. A.; McGrath, J. E.; Zawodzinski, T. A. J. Membr. Sci. 2005,250, 183.
[118] 龐寧寧 物理雙月刊 2006,廿八卷一期, 1.
[119] Springer, T. E.; Zawodzinski, T. A.; Gottesfeld, S. J. Electrochem. Soc. 1991, 138 (8),2334.
[120] Yeo, R. S.; Chan, S. F.; Lee J. J. Membr. Sci. 1981, 9, 273.
[121] Robertson, G. P.; Mikhailenko, S. D.; Wang, K.; Xing, P.; Guiver, M. D.; Kaliaguine, S.J.Membr. Sci. 2003, 219,113.
[122] Wu, H. L.; MA, C. C.; Li, C. H.; Chen, C. Y. J. Polymer Science: Part B: Polymer Physics 2006, 44, 3128.
[123] Xing, P.; Robertson, G. P.; Guiver, M. D.; Mikhailenko, S. D.; Wang, K.; Kaliaguine, S.J Membr. Sci. 2004, 229, 95.
[124] Pan, J.P.; Shiau, G. Y.; Lin, S.S.; Chen, K. M. J. Appl. Polym. Sci. 1992, 45, 103.
[125] Gouri, C.; Ramaswamy, R.; Ninan, K. N. European Polymer Journal 2002, 38, 503.
[126] Grenier-Loustalot, M. F.; Da Cunha, L. Polymer 1997, 39, 1833.
[127] Wu, H. L.; Ma, C. C.; Li, C. H.; Chen, C. Y. J. Polymer Science: Part B: Polymer Physics 2006, 44, 3128.
[128] Kreuer, K. D.; Paddison, S. J.; Spohr, E.; Schuster, M. Chem. Rev. 2004, 104, 4637.
[129] Book: the hydrogen bond and the water molecule p260.
[130] Lee, Y. J.; Bingol, B.; Murakhtina, T.; Sebastiani, D.; Meyer, W. H.; Wegner, G.;Spiess, H. W. J. Phys. Chem. B 2007, 111, 9711.
[131] Cherry, B. R.; Fujimoto, C. H.; Cornelius, C. J.; Alam, T. M. Macromolecules 2005, 38,1201.
[132] Ye, G.; Fortier-McGill, B.; Traer, J. W.; Czardybon, A.; Goward, G. R. Macromol. Chem.Phys. 2007, 208, 2076.
[133] Fyfe, C.A. Solid-State NMR for Chemists, CFC Press, Guelph, ON, 1983.
[134] Hindman, J. C.; Zielen, A. J.; Svirmickas, A.; Wood, M. J. Chem. Phys. 1971, 54, 621.
[135] Derjaguin, B.V.; Churaev N.V. Langmuir 1987, 3, 607.
[136] Kreuer, K. D. J. Membr. Sci. 2001, 185, 29.
[137] de Araujo, C. C.; Kreuer, K. D.; Schuster, M.; Portale, G.; Mendil-Jakani, H.; Gebel, G.;Maier, J. Phys. Chem. Chem. Phys. 2009, 11, 3305.
[138] Jie, Z.; Haolin, T.; Mu, P. J. Membr. Sci. 2008, 312, 41.
[139] Hao, L. T.; Mu, P. J. Phys. Chem. C 2008, 112, 11556.
[140] Krishnan, P.; Park, J. S.; Kim, C. S. J. Membr. Sci. 2006, 279, 220.
[141] Colomban, P., Proton conductors : solids, membranes and gels-materials and devices,Cambridge university press., New York, 1992.
[142] Einsla, M. L.; Kim, Y. S.; Hawley, M.; Lee, H. S.; McGrath, J. E.; Liu, B.; Guiver, M.D.; Pivovar, B. S. Chem. Mater. 2008, 20, 5636.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明