博碩士論文 93243006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:133 、訪客IP:18.219.63.90
姓名 吳信和(Hsin-Ho Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 複合型耐燃高分子之型態學,熱性質與裂解動力學的探討
(Morphology, Thermal Characteristics and Degradation Kinetics of Complex Flame Retarded Polymers)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 無鹵化具難燃性的高分子為近年來許多研究的發展重點,其達成效果的路徑包含具有可捕捉自由基的結構,可在表面形成連續性之焦炭結構的阻燃遮蔽層,以及具有熱延遲性之耐熱性結構之技術研究為眾多研究論文之重點。然而從許多的發表成果與現行的材料應用後的效果發現,許多無鹵化具難燃性高分子材料雖具有明顯的耐熱性或是耐燃性,但在其他的物性上有時呈現負面的效果,例如吸水性的增加,硬度及韌性的降低,電氣性質的破壞,以及與其他材料摻混時的相容性問題等,此種的結果將會導致材料的應用遭到侷限,甚而影響在相對提升的物性需求下,無法因應許多產品的特性需求。夲研究的目的在建構具有耐熱性/耐燃性的高分子,同時亦能穩定或是提升材料物理性質,該種高分子達成方式為 (1) 增加芳香環數量,(2) 提升材料之交聯密度 (3) 加速熱分解時的焦炭形成率,以及 (4) 可釋放不燃性氣體等,藉由上述幾種方式可使高分子材料具有延緩與阻隔熱能的傳遞,以及稀釋熱源等特性以提升耐熱性/耐燃性,同時維持機械特性及電氣特性等作用。在夲研究中,我們首先以酚醛樹脂為基礎並製備數種具有較高含量的剛性/韌性結構的新型酚醛結構高分子,第一步先進行高分子的結構特性與特徵之了解,包含其溶解度差異性,改質方式對分子量的影響,以及熱反應動力學的變化。再者,選擇適合之學理模式來進行型態學,熱性質與裂解動力學的探討,以了解固化後之高分子在熱環境中的轉變,包含結構的自發性反應,裂解活化能的差異,熱環境的重量變化轉化率,以及焦炭形成速率等機制。此外,材料的機械性質亦將利用DMA或是TMA等相關儀器進行材料的物理性質變化,以期更深入了解材料的特性(儲存/損失模數、熱膨脹等)與差異。在第二階段的研究實驗中,將利用添加環氧樹脂或是無機型填充料的方式以建構有機/無機之複合型高分子,了解該複合型高分子在不同比例的添加量影響之下材料的變化,並利用紅外線光譜與固態核磁共振的儀器與學理方式進行不同的高分子間其相容性的變化與差異性性,進一步再以上述之方式探討環氧樹脂與改質酚醛樹脂在不同的添加比例下熱性質的差異。夲研究之結果將有助於了解改質型酚醛樹脂所建構之新型態複合型高分子在耐燃性的助益,包含耐燃性的提升方式與概念,未來在其他型態之無鹵型高分子應用方面,亦希望提供一種廣泛有效的評估方式與達成方法。
摘要(英) The preparation and application of halogen-free flame retard polymer becomes the major concern of environment friendly study in recent years, mostly researches put the attention in radical trapping reaction with appropriate structures, efficient flame-retard layer by continuous surface char-forming, and the thermal stable units contribute to heat resistance. There are still have some problems lead to the negative influences including higher H2O absorption, lower flexibility and modulus, destruction of electrical properties, and ease to phase separation in hybrid polymer, although the presented the excellent flame retardancy. The approaches of our study in the novel halogen-free flame retard polymers will settle on few ways such as (1) higher aromatic content, (2) increased cross-linking density, (3) accelerated the char yielding, and (4) inflammable organic volatiles release. They are possible to anticipate in heat resist, oxygen dilution, thermostability, and stable mechanical properties.
In this report we follow the concepts aforementioned to prepare novel novolac resins which present higher density and toughness, the structure and characteristics are examined to realize the solubility, molecular weight and thermal kinetics at first, followed by the study in morphology, thermal characteristics and degradation kinetic to identify the structural reaction, degradation active energy change and the weight loss conversion, etc. Furthermore, physical properties are discussed detailed in the difference of loss modulus, storage modulus and thermal expansion using dynamic mechanical analysis or thermal mechanical analysis. The complex hybrid-polymer system with epoxy resin or inorganic filler is developed in advanced experimental by various weight ratio with IR and solid-state NMR to understand the influence of compatibility, and then the results and discussions of complex hybrid polymers will be presented correspondingly. It is necessary to understand the flame retardancy with novel modified novolac resins about techniques and concepts, for the further application widely in other kinds of halogen-free polymer, effective estimation will leads to the higher performance polymeric materials.
Furthermore, flame retardancy can be made more pronounced by combine the inorganic filler to polymer complex. In contrast with blank, the obvious effect due to decreased burning time under 35 sec. at the initial content, and show the degree by CHABN > HPDEN > CPAN. Therefore, they show the V0 degree laminates only when filler content around 45 ~ 50 wt. % in contrast with the blank series (70 wt. %). On the other hand, the CPAN and HPDEN series show the burning time around at 5 ~ 6 sec. and the CHABN series is nearly zero. It indicates the effective flame retardancy of highly thermostable polymers can be achieved with lower inorganic filler content when using modified phenolic. They will display effective heat or flame barrier property through some possible mechanisms such as sharing the heat of polymer by inorganic filler, flame restricted by organic-inorganic hydride structure, and highly / quick char formation.
關鍵字(中) ★ 熱性質
★ 裂解動力學
★ 耐燃高分子
關鍵字(英) ★ Thermal Characteristics
★ Flame Retarded Polymers
★ Degradation Kinetics
論文目次 Contents
Abstract in Chinese…………………………………………………………………I
Abstract……………………………………………………………………………..III
Acknowledgement……………………………………… ………………………V
Contents……………………………… ……………………………………………VI
List of Tables………………………………………………………………………XI
List of Schemes…………………………………………………………………..XII
List of Figures……………………………………………………………………XIII
Autobiography and Publications………………………………………………223
Chapter 1 General introduction……………………………………..................1
References…………………………………………………………………6
Chapter 2 Basic Theory and Research Background………………………..8
2-1 General introduction in organic polymer flame retardant…………...8
2-2 General mechanisms of flame retardants……………………………9
2-3 Development of environmental friendly flame retardant…………..12
2-4 Research motivation……………………………………………......13
2-4-1 Introduction of phenolic resin and epoxy resin…………….13
2-4-2 Novel phenolic novolac resin and the application with epoxy………………………………………………………..27
2-4-3 Research framework and methodology…………………….29
2-5 Analytical methods………………………………………………...30
2-5-1 Degradation kinetic analysis……………………………......30
2-5-2 Limited oxygen index (LOI)………………………………..33
2-5-3 Flammability test (UL-94)………………………………….35
2-5-4 Dynamic mechanical analysis………………………………38
2-5-5 Infrared Spectroscopy………………………………………38
2-5-6 NMR experiments…………………………………………..39
References………………………………………………………………..41
Chapter 3 Modification and Evaluation of Two Novolac Derivatives and Their Properties in Epoxy Composites………………………...48
3-1 Introduction………………………………………………………...48
3-2 Experimental……………………………………………………….51
3-2-1 Materials……………………………………………………51
3-2-2 Techniques………………………………………………….51
3-2-3 Synthesis of modified phenolic resins……………………...52
3-2-4 Curing procedure of epoxy resin with CPAN and CPBAN..53
3-3 Results and discussions…………………………………………….54
3-3-1 Molecular characteristics of CPAN and CPBAN…54
3-3-2 Thermal characteristics of cured epoxy / novolac complex resins……………………………………………………….56
3-3-3 Curing behaviors and thermal degradation kinetic by DSC and TGA…………………………………………………...58
3-3-4 Effects of filler on thermostability………………………….61
3-4 Conclusions………………………………………………………...63
References………………………………………………………………..64
Chapter 4 Thermal Characteristics, Degradation Kinetics and Mechanical Properties of Novolac Derivative Resins……81
4-1 Introduction………………………………………………………...81
4-2 Experimental…………………………………………………….....83
4-2-1 Material……………………………………………………83
4-2-2 Characterizations and instruments………………………...83
4-2-3 Synthesis of modified novolac resins…………………......84
4-2-4 Curing procedure of modified novolac resins……………..86
4-3 Results and discussions…………………………………………….87
4-3-1 Molecular characteristics of CPAN, HPDEN and CHABN …………………………………………………….88
4-3-2 Thermal characteristics of synthesized polymers…………..90
4-3-3 Thermal properties, dynamic mechanical analysis and degradation kinetics of cured novolac resins………………..91
4-4 Conclusions………………………………………………………...97
References………………………………………………………………..98
Chapter 5 Hydrogen bonding interactions and miscibility studies of Functionalized Epoxy / Novolacs Composites……………...117
5-1 Introduction……………………………………………………….117
5-2 Experimental ……………………………………………………..119
5-2-1 Synthesis of modified novolac resins……………………..119
5-2-2 Prepare of epoxy / novolac resins complexes……..............120
5-2-3 Differential Scanning Calorimetry (DSC)………………...120
5-2-4 Infrared Spectroscopy……………………………………..120
5-2-5 NMR experiments…………………………………………121
5-3 Results and discussions…………………………………………...122
5-3-1 Strength of specific interaction, as determined by FTIR spectroscopy……………………………………………….122
5-3-2 Solid-state NMR spectroscopy (13C CP/MS NMR spectra...................................................................................127
5-3-3 Relaxation times of and the contact time of the complex……………………………………………………128
5-4 Conclusions……………………………………………………….133
References………………………………………………………………135
Chapter 6 Degradation Kinetics, Mechanical Properties and Morph- ology of Functionalized Novolacs / Epoxy Composite….155
6-1 Introduction……………………………………………………….156
6-2 Experimental……………………………………………………...156
6-2-1 Materials…………………………………………………..156
6-2-2 Curing procedure of novolac resins and epoxy complexes………………………………………………….157
6-3 Results and discussions…………………………………………...157
6-3-1 Thermal behaviors and degradation kinetics of epoxy / novolac complex resins……………………………………158
6-3-2 Influences of mechanical properties and morphology of different epoxy / novolac complex resins………………….165
6-4 Conclusions……………………………………………………….170
References………………………………………………………………172
Chapter 7 Limited Oxygen Index and Flame Retardancy of Function- alized Novolacs / Epoxy Composites on Glass Fiber Cloth………………………………………………………197
7-1 Introduction……………………………………………………….197
7-2 Experimental……………………………………………………...199
7-2-1 Materials…………………………………………………..199
7-2-2 Technologies………………………………………………200
7-3 Results and discussions…………………………………………...201
7-3-1 Thermal stability of epoxy / novolac complex laminates by LOI………………………………………………………...202
7-3-2 Flammability test: UL-94…………………………………205
7-4 Conclusions……………………………………………………….208
References………………………………………………………………210
Conclusions………….............................................................................................219
參考文獻 References
1. Camino G. and Costa L.; Performance and Mechanisms of Fire Retardants in Polymersw A Review, Polym Degrad and Stab, 1988, 20 271-294.
2. Cullis C.F. and Hirschter M.M.; The Combustion of Organic Polymers, Clarendon Press, Oxford, 1981.
3. Kuryla W.C. and Papa A.J. (Eds).; FlameRretardancy of Polymeric Materials, Dekker, New York, Vols 1-5, 1973-1979.
4. Lewin M., Atlas S.M. and Pearce E.M. (Eds); Flame-Retardant Polymeric Materials, Plenum Press, New York, Vols 1-3, 1975-1982.
5. Lyons J.W.; The Chemistry and Uses of Fire Retardants, Wiley, New York, 1970.
6. Warren P.C.; Polymer Stabilization (Hawkins W.L. (Ed.)), Wiley, New York,
1972.
7. Cuilis C.F.; Developments in Polymer Degradation, Vol. 3 (N. Grassie (Ed.)),
Appl. Sci. Publ., London, 1981.
8. Hirschler M.M.; Developments in Polymer Stabilization, Vol. 5 (G. Scott (Ed.)), Appl. Sci. Pub., London, 1982.
9. Denisov. E.T.; Developments in Polymer Stabilization, Vol. 5 (G. Scott (Ed.)),
Appl. Sci. Pub., London,1982.
10. Camino G..; Developments in Polymer Degradation, Vol. 7 (N. Grassie (Ed.)),
Appl. Sci. Pub., London, 1987.
11. Camino G. and Costa L.; Rev. Inorg. Chem., 8, 69 (1986).
12. Fenimore C. P.; in ref. 3, Vol 1, Chapter 9.
13. Stuetz D.E., Diedwardo A.M., Zitomer F. and Barnes B.P.; Polymer combustion, J. Polym. Sci. Polym. Chem. 1975, 13, 585-621.
14. Brauman S.K.; Polymer degradation and combustion, J. Polym. Sci. Polym. Chem. 1977, 15, 1507-1509.
15. Brauman S.K., Chen I.J. and Matzinger D.P.; Polystyrene degradation during combustion, J. Polym. Sci. Polym. Chem. 1983, 21, 1831-1845.
16. Gibov K.M., Abdikarimov M.N. and Zhubanov B.A.; The Role of Convected Thermal Energy and Oxygen in the Flame During the Combustion of Polymers; Polym. Sci. USSR, 1978, 20, 3013-3020.
17. Jakes K.A. and Drews M.J.; On the Role of Oxygen in the Horizontal Flame Spread of Polypropylene, J. Polym. Sci. Polym. Chem., 1981, 19, 1921-1936.
18. Ferrers. R.S. Clark, Ignition of Low-Density Polyethylene Slabs by a Small Flame, Polym. Sci. Polym. Chem., 1983, 21, 3225-3232.
19. Ferrers. R.S. Clark; The Role of Oxygen in the Ignition of Polystyrene by a Small Flame, J. Polym. Sci. Polym. Chem., 1984, 22, 263-268.
20. A. Baign6e and F. R. S. Clark, in, Fire safety science (C. E. Grant and P. J. Pagni
(Eds)), Hemisphere, Washington, 381 (1986).
21. C. F. Cullis, in, Fire safety science (C. E.Grant and P. J. Pagni (Eds)),Hemisphere,
Washington, 371 (1986).
22. Costa L. and Camino G., Rôle of Thermal Oxidation of The Polymer in the Burning Process, Polym. Deg. and Stab., 1985,12, 297-301.
23. Mayo F. R.; Oxygen-Induced Pyrolyses of Polyolefins, J. Polym. Sci. Polym. Lett., 1976, 14, 713-716.
24. Fenimore C.P. and Jones G.W.; Modes of Inhibiting Polymer Flammability, Combustion and Flame, 1966,10, 295-301.
25. Fenimore C.P. and Jones G.W., Consumption of Oxygen Molecules in Hydrocarbon Flames Chiefly by Reaction with Hydrogen Atoms, J. Phys. Chem., 1959, 63, 1834-1838.
26. Wu H.H., Yang W.T., Hsueh C.C. and Liu S.F.; Development and Application of Flame Retardant in PCBs. Indus. Mater. 2008, 264, 159-166.
27. Kopf P.W., Little D.; Phenolic Resins. Grayson M, editor. Kirk-Othmer, 3rd Edition. Encyclopaedia of Chemical Technology, vol. 18. New York: Wiley; 1991. p. 603. Kopf PW, Little AD. In: Mark HF, Bikales NM, Overberger CG, Menges G,, editors, 2nd Ed. Encyclopaedia of Polymer Science and Engineering, vol. 11. New York: Wiley; 1988. p. 45–94.
28. Gardziella A, Pilato LA, Knop A. Phenolic Resins, Chemistry, Applications, Standardization, Safety and Ecology, 2nd edition. Heidelberg: Springer; 2000.
29. Knop A, Pilato LA. Phenolic Resins: Chemistry Applications and Performance- Future Directions. Heidelberg: Springer; 1985.
30. Phenli U.A.; In: Salamone JC, editor. Phenolic Resins: Polymeric Materials Encyclopaedia, vol. 7. Florida: CRC Press; 1996. p. 5305.
31. Matsumoto A. In: Salamone JC, editor. Phenolic Resins: Polymeric Materials Encyclopaedia, vol. 7. Florida: CRC Press; 1996. p. 5039.
32. Kuzak S.G., Hiltz J.A., and Waitkus P.A.; Impact Performance of Phenolic Com- posites Following Thermal Exposure, J. Appl. Polym. Sci. 1998, 67, 349-361.
33 Sunshine N.B.; Flame Retardancy of Phenolic Materials, Chapter 4: Flame Retardancy of Phenolic Resins and Urea- and Melamine-Formaldehyde Resins, W. C. Kuryla and A.J. Papa Eds., Vol. 2, Marcel Dekker, Inc. New York, 1973.
34. Reghunadhan C.P.N., Bindu R.L. and Ninan K.N.; Addition Curable Phenolic Resins Based on Ethynyl Phenyl Azo Functional Novolac, Polymer 2002, 43, 2609-2617.
35. Seo K., Kim J. and Bae J.Y.; Towards the Development of Thermally Latent Novolac-Based Char Formers for ABS Resins, Polym. Deg. Stab. 2006, 91, 1513-1521
36. Martin C., Ronda J.C. and Cádiz V.; Novel Flame-Retardant Thermosets: Diglycidyl Etherof Bisphenol A as a Curing Agent of Boron-Containing Phenolic Resins, J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 1701-1710
37. Lu G., Huang Y., Yan Y., Zhao T. and Yu Y.J.; Morphology Transition of Bismaleimide-Modified Novolac Resin, J. App. Polym. Sci. 2006, 102, 76-83.
38. Liu Y.L.; Flame Retardant Epoxy Resins From Novel Phosphorous-Containing Novolac, Polymer 2001, 42, 3445–54.
39. Liu Y.L., Wu C.S. and Chang T.C.; Flame-Retardant Epoxy–Resins From O-Cresol Novolac Epoxy Cured with a Phosphorus Containing Aralkyl Novolac. J. Polym. Sci. Polym. Chem., 2002, 40, 2329-2339.
40. Yang, Y., Ming Z. and Yi L.; A Novel Addition Curable Novolac Bearing Phtha- lonitrile Groups: Synthesis, Characterization and Thermal Properties, Polym. Bull., 2007, 59, 185-194.
41. Bindu R.L., Reghunadhan C.P.N., and Ninan K.N.; Phenolic Resins with Phenyl Maleimide Functions: Thermal Characteristics and Laminate Composite Properties, J. Appl. Polym. Sci., 2001, 80, 1664-674.
42. Bindu R.L., Reghunadhan C.P.N., and Ninan K.N.; Addition-Cure-Type Phenolic Resin Based on Alder-ene Reaction: Synthesis and Laminate Composite Properties. J. Appl. Polym. Sci., 2001, 80, 737–749.
43. Reghunadhan C.P.N., Mathew D. and Ninan K.N.; Imido-Phenolic-Triazine Network Polymers Derived From Maleimide-Functional Novolac. Euro. Polym. J., 2001, 37 315-321.
44. Gouri C., Reghunadhan C.P.N. and Ramaswamy R.; Adhesive and Thermal Characteristics of Maleimide-Functional Novolac Resins. J. Appl. Polym. Sci., 1999, 73, 695–705.
45. Dumler R., Thoma H. and Hulzinger O.; Thermal Formation of Polybrominated Dibenzodioxins (PBDD) and Dibenzofurans (PBDF) from Brominated Containing Flame Retardants. Chemosphere, 1989, 19, 305-308.
46. Luijik P. and Govers H.A.J.; Thermal Degradation Characteristics of High Impact Polystyrene / Decabromodiphenylether / Antimony Oxide Studied by Derivative Thermogravimetry and Temperature Resolved Pyrolysis-Mass Spectrometry. Formation of Polybrominated Dibenzofurans, Antimony (oxy) Bromides and Brominated Styrene Oligomers. J. of Appl. Pyro., 1991, 20, 303-319.
47. Carlsson H., Nilson U. and Ostan C.; Video Display Units: An Emission Source of Contact Allergic Flame Retardant Triphenyl Phosphate in the Indoor Environment. Envir. Sci. and Techno., 2000, 34, 3885-3889.
48. Iji M. and Kiuchi Y.; Self-Extinguishing Epoxy Molding Compound with No Flame Retardants for IC Packages, Proc. of the 3rd 1999 IEMT/IMC Symposium, Oomiya, Japan, pp.238-241, 1999.
49. Kiuchi Y. and Iji M.; Environmentally Conscious IC Molding Compound without Toxic Flame-Retardants, Proc. of ISSM2000, Tokyo, Japan, pp.147-150, 2000.
50. Iji M. and Kiuchi Y.; Flame-Retardant Epoxy Resin Compounds Containing Novolac Derivatives with Aromatic Compounds. Polym. Adv. Technol., 2001, 12, 393-406.
51. Iji M. and Kiuchi Y.; Environmentally Friendly Printed Wiring Board (Glass-Epoxy Laminate) without Halogen-type and Phosphorus-type Flame Retardants. Proc. of 2001 ICEP, Tokyo, Japan, pp.177-181, 2001.
52. Kiuchi Y. and Iji M.; Development of Environmentally Self-Extinguishing Epoxy-Resin Compounds and Their Application to Electronic Devices- Achievement of Flame Retardancy and Practicality of the Compounds by Including No Halogen and Phosphorous Flame-Retarding Additives. J. of Japan Institute of Electronics Packaging, 5, 3, pp.212-217, 2002.
53. Iji M. and Kiuchi Y.; Flame-retardant epoxy resin compounds containing novolac derivatives with aromatic compounds. Polym. Adv. Technol. 2001, 12, 393-406.
54. Kaji M, Nakahara K. Ogami K. and Endo T.; Synthesis of a Novel Epoxy Resin Containing Pyrene Moiety and Thermal Properties of its Cured Polymer with Phenol Novolac. J. Appl. Polym. Sci., 2000, 75, 528–535.
55. Kissinger H.E.; Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702-1706.
56. Ozawa T.J.; Kinetic Analysis of Derivative Curves in Thermal Analysis. J. Therm. Anal. 1970, 2, 301-324.
57. Tesoro G.C. and Meiser C.H. JR; Some Effects of Chemical Composition on the Flammability Behavior of Textiles. Textile Res. J. 1970, 40, 430 – 436.
58. ASTM D 2863, Standard for Flammability of Plastic Materials for Parts in Devices and Appliances, Underwriters Laboratories INC. (UL), 1994.
59. K. Sebata, J.H. Magill and yc. Alarie, Polyphosphazenes: thermal stability and toxicity, Fire Retardants: Proc. 1978 Int. Symp. on Flammability and Fire Retardants, Technomic Publication Co., Westport, Ct, 1978.
60. Van Krevelen D.W.; Some Basic Aspects of Flame Resistance of Polymeric Materials. Polymer 1975, 16, 615-620
61. Gracik,T. D.; Long,G. L. Prediction of Thermoplastic Flammability by Thermogravimetry. Thermochim. Acta, 1992, 212, 163-170
62. UL-94 - Test for Flammability of Plastic Materials for Parts in Devices and Appliances, Fifth Edition (October 96), Underwriters Laboratories Inc.
63. Hilado, C.J., Flammability Handbook of Plastics, Fifth Edition, Technomic Publishing Co., Lancaster, PA
64. Ferry, J.D.; Some Reflections on the Early Development of Polymer Dynamics: Viscoelasticity, Dielectric Dispersion and Self-Diffusion. Macromolecules, 1991, 24, 5237-5245.
65. Meyers, M.A.; Chawla K.K.; Mechanical Behavior of Materials. Prentice-Hall. 1999.
66. Stenzenberger H.D.; Recent Developments of Thermosetting Polymer for Advanced Composites. Composites Struct 1993, 24, 219-231.
67. McGrail P.T., Street A.C.; Structure-property relationships in high-performance thermoset- thermoplastic blends. Makromol Chem Macromol Symp 1992, 64, 75.
68. Fedtke M. In: Kricheldorf HR, editor. Handbook of polymer synthesis (Part B), New York: Marcel Dekker, 1991. p. 1489.
69. Fyfe, C. A. “Solid State NMR for Chemists”, CFC Press, Guelph, 1983.
70. Schaefer, J. “Topics in Carbon-13 NMR Spectroscopy”, Wiley, New York, 1979.
71. Komoroski, R. A. “High Resolution NMR Spectroscopy of Synthetic Polymer in Bulk”, VCH Publishers, Deerfield Beach, 1986.
指導教授 諸柏仁(Peter P.J. Chu) 審核日期 2010-10-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明