博碩士論文 952406022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.189.188.161
姓名 趙建昌(Chien-Chang Chao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 表面電漿增益矽薄膜太陽能電池之微光學與光電模擬
(Optics and Electronics Simulation of Surface Plasmon Enhanced Silicon Thin Film Solar Cells)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 薄膜太陽能電池因為有低製造成本以及低製造能量而引起人們的興趣及注意。在各種應用至薄膜太陽能電池的材料當中,矽這種材料有穩定、大量、無毒性以及與半導體製程相容的特性;另外氫化非晶矽薄膜有大面積沉積於各式基板的優勢。在本論文中,我們的研究集中於非晶矽薄膜太陽能電池的光學特性以及光電特性。AMPS-1D (Analysis of Microelectronic and Photonic Structures) 程式可以模擬薄膜太陽能電池的電性表現,而嚴格耦合波理論(Rigorous Coupled-Wave Analysis)以及有限差分時域法(Finite-Difference Time-Domain)分析微奈米結構之波動光學響應。
首先由AMPS-1D模擬p-i-n非晶矽薄膜太陽能電池的電性表現,發現當本質層厚度由300nm降為100nm時則其填充因子從0.388升高至0.547,即較薄的太陽能電池能夠有較高的內部量子效率。內部量子效率的上升可以由太陽能電池內建電場的提昇以及光激發的電子電洞對到達電極距離的縮短來解釋。所以為了提高轉換效率,將傾向製作較薄的太陽能電池。然而,較薄的太陽能電池會有吸光能力不足的情況,導致薄膜太陽能電池一般有較低的外部量子效應。為了增加薄膜吸收率,採用介電質光柵結構的遠場散射效應(霧度),各種ITO光柵週期及深度下的霧度及反射率被計算以及討論。高霧度設計只對於主動層厚度大於400nm時有利;當主動層厚度低於300nm時,抗反射設計反而變得重要。為了增加100nm厚度以下主動層的吸收率,我們使用金屬光柵;這金屬光柵以及原薄膜太陽能電池組成一多層電漿子結構。以嚴格耦合波理論以及有限差分時域法分析此微奈米結構之波動光學性質並且相互比對。藉由角度解析頻譜以及電磁場分佈圖來探討此結構的表面電漿共振效應,可以分辨出兩種不同特性的表面電漿共振模態,即侷域性表面電漿(localized surface plasmon)共振以及表面電漿子(surface plasmon polaritons)共振。這兩個共振模態亦會有耦合的情況,使得原本應該具有狹窄半高寬的表面電漿子共振的頻寬變寬,適合寬廣的太陽光譜。在正向入射光情況下能使電漿子結構太陽能電池有光吸收增強效應28.7%。更進一步分析光吸收的空間分佈,發現在表面電漿共振條件下有部分光子是由金屬材質吸收而不是由主動層吸收,主動層只吸收約50%的入射能量而金屬材質吸收約15%的入射能量,這顯示了一般高估表面電漿共振增強光吸收效率的情況,這額外由金屬吸收的能量並不能貢獻到外部量子效率的部份。當假設非晶矽內的內部量子效率為100%的時候,藉由表面電漿子共振效應可以使短路電流密度(Jsc) 些微增加12.2%。光吸收分佈模擬顯示了在靠近銀光柵角落附近的非晶矽藉由表面電漿共振而獲得額外的光子吸收以及銀光柵的遮蔽效應。
我們使用AMPS-1D程式計算出ITO/a-Si:H/Ag太陽能電池的空間內部量子效率。光吸收與空間內部量子效率的空間分佈相關性對於等效的內部量子效率有很大的影響;換句話說,吸收光子的位置也是很重要的。藉由光學以及光電模擬的結合,可以計算出外部量子效率。當產生表面電漿共振的結構遠離主動層的時候,使用表面電漿共振不一定能夠增加主動層的吸收效率。
摘要(英) Thin film solar cells, which require much less energy for fabrication, have recently begun to attract attention. Among the present photovoltaic devices, silicon-based thin film solar cells show the greatest potential, because the material is plentiful, stable, robust and nontoxic. Additionally, silicon-based cells are compatible with existing processes in the well-developed semiconductor fabrication industry. Large area hydrogenated amorphous silicon (a-Si:H) thin film solar cells can be fabricated on various substrates. In this thesis, we focus on the investigations of amorphous silicon thin film solar cells, both in optics and electronics. The analysis of microelectronic and photonic structures (AMPS-1D) program simulates the electrical properties and the rigorous coupled-wave analysis (RCWA) and finite-difference time-domain (FDTD) methods simulate the optical properties.
The AMPS-1D program is applied to investigate the thickness effect of an a-Si:H p-i-n thin film solar cell. The filling factor (FF) in J-V curve increases to 0.547 from 0.388 when the thickness of intrinsic layer decreases to 100nm from 300nm. Higher FF implies the higher internal quantum efficiency (IQE) and this improvement can be explained by the increasing of the build-in electric field and the shorting of collection distance of excited carriers. Therefore, for high efficiency, the requirement of thinner solar cells is proposed. However, a thinner solar cell always encounters the light absorption problem leading to lower external quantum efficiency (EQE). The solar cells with dielectric grating with various grating periods and depths are studied for enhancement through its far field scattering effect (Haze effect). The Haze effect only has benefit with an active layer thicker than 400nm. When the active layer is thinner than 300nm, the anti-reflection effect from the dielectric grating becomes important. For enhancing light absorption in active layer thinner than 100nm, a metal grating is applied. The metal grating and original solar cell forms a plasmonic multilayer structure (PMS). The surface plasmon resonances of the PMS are analyzed by the rigorous coupled-wave analysis (RCWA) and finite-difference time-domain (FDTD) methods. The surface plasmon (SP) resonances including the surface plasmon polaritons (SPPs) and the localized surface plasmon (LSP) in the PMS are recognized through angle-resolved spectrums and corresponding field distributions. The coupling between them makes a border absorption band than traditional SPPs on a flat surface; this is benefit for the broad solar spectrum. The absorbed photon numbers can increase 28.7% when the PMS is applied. The spatial distribution and separation of absorptioin in plasmonic solar cells is further studied and we show a usually overestimation of absorption in the active layer. The active layer only absorbs 50% of incident energy while the metallic material absorbs 15%, which can not contribute to the external quantum efficiency (EQE). When the IQE is assumed to be 100% everywhere inside the a-Si layer, the slight enhancement 12.2% of short-circuit current (Jsc) is achieved through the excitation of SPPs resonance. The concentration of energy dissipation around the corners of metal grating and the blocking effect of metal grating are shown. We demonstrate that the spatial-dependent IQE (SDIQE) in ITO/a-Si:H/Ag solar cell through the AMPS-1D program. The correlation between absorption distribution and SDIQE influences a lot in the effective IQE. In other words, the position of absorbing photons is critical. The EQE of plasmonic solar cells is theoretically investigated through the combination of the optics and electronics simulations. The surface plasmon resonances might fail to enhance the light absorption of active layer when the surface plasmon exciter is far from the active layer.
關鍵字(中) ★ 矽太陽能電池
★ 表面電漿
關鍵字(英) ★ silicon solar cell
★ surface plasmon
論文目次 中文摘要.…………………………………………………………………………………I
Abstracts………………………………………………………………………………III
Acknowledgement………………………………………………………………………V
Figures list………………………………………………………………………………VIII
Tables list………………………………………………………………………………XIV
Chapter 1 Introduction……………………………………………………………………1
1.1 Silicon thin film solar cell………………………………………………………………1
1.2 Motivation and objective……………………………………………………………2
1.3 Arrangement of thesis……………………………………………………………………3
Chapter 2 Numerical methods, surface plasmon resonances, and light absorption…4
2.1 Numerical methods………………………………………………………………………4
2.1.1 AMPS-1D (Analysis of Microelectronic and Photonic Structures) program…5
2.1.2 RCWA (Rigorous Coupled-Wave Analysis) method…………………………8
2.1.3 FDTD (Finite-Difference Time-Domain) method……………………………12
2.1.4 Summary……………………… ……………………………………………15
2.2 Surface plasmon resonances……………………………………………………………16
2.2.1 Drude model……………………………………………………………………17
2.2.2 Surface plasmon polaritons……………………………………………………20
2.2.3 Localized surface plasmon………………………………………………………23
2.2.4 Summary………………………………………… …………………………25
2.3 Light absorption…………………………………………………………………………26
2.3.1 Absorption issue…………………………………………………………………26
2.3.2 Generation of electron-hole pairs………………………………………………27
2.3.3 Quantum efficiencies……………………………………………………………28
2.3.4 Summary…………………………………………………………………………29
Chapter 3 Thinner solar cells……………………………………………………………30
3.1 Requirement of thinner solar cells……………………………………………………31
3.2 Dielectric grating assisted thin film solar cell…………………………………………37
3.3 Metal grating assisted thin film solar cell………………………………………………43
3.4 Summary…………………………………………………………………………………56
Chapter 4 Plasmonic thin film solar cells…………………………………………………58
4.1 Absorption enhancement through plasmonic structure…………………………………58
4.1.1 Spatial distribution of absorption…………………………………………………59
4.1.2 Short-circuit current density enhanced by surface plasmon polaritons…………65
4.2 Plasmonic structure with additional ITO layer………………………………………70
4.2.1 Spatial-dependent internal quantum efficiency……………………………………70
4.2.2 Effective internal quantum efficiency……………………………………………76
4.3 Summary…………………………………………………………………………………82
Chapter 5 Conclusion……………………………………………………………………85
References………………………………………………………………88
Publications List......................................................................................................................97
Appendix..................................................................................................................................98
參考文獻 1-1. D. Ginley, M. A. Green, and R. Collins, “Solar energy conversion toward 1 terawatt,” MRS Bulletin 33, 355-372 (2008).
1-2. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables,” Prog. Photovolt. Res. Appl. 18, 144-150 (2010).
1-3. M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron 18, S15-S19 (2007).
1-4. M. A. Green, “Consolidation of thin-film photovoltaic technology: the coming decade of opportunity,” Prog. Photovolt. Res. Appl. 14, 383-392 (2006).
1-5. N. S. Lewis, “Toward cost-effective solar energy use,” Science 315, 798-801 (2007).
1-6. J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451, 518-528 (2004).
1-7. A. Shalav, B. S. Richards, M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Solar Energy Mater. Solar Cells 91, 829-842 (2007).
1-8. T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Solar Energy Mater. Solar Cells 90, 3327-3338 (2006).
1-9. C. H. Peters, A. R. Guichard, A. C. Hryciw, M. L. Brongersma, and M. D. McGehee, “Energy transfer in nanowire solar cells with photon-harvesting shells,” J. Appl. Phys. 105, 124509 (2009).
1-10. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8, 710-714 (2008).
1-11. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Exp. 15, 16986-17000 (2007).
1-12. S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501 (2007).
1-13. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249-3252 (2007).
1-14. M. L. Brongersma, “Engineering optical nanoantennas,” Nature Photonics 2, 270-272 (2008).
1-15. H. A. Atwater, “The promise of plasmonics” Sci. Am. 296, 56-63 (2007).
1-16. A. Polman, “Plasmonics applied,” Science 332, 868-869 (2008).
1-17. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Electrifying plasmonics on silicon,” Nature Mater. 9, 3-4 (2010).
1-18. K. Tvingstedt, N. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
1-19. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
1-20. M. Kirkengen, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007).
1-21. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
2-1. J. J. Hench and Z. Strakos, “The RCWA method – a case study with open questions and perspectives of algebraic computations,” Electron. Trans. Num. Anal. 31, 331-357 (2008).
2-2. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758-2767 (1997).
2-3. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986).
2-4. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Ant. Prop. 14, 302-307 (1966).
2-5. A. Taflove, and S. C. Hagness, Computational electrodynamics: The Finite-Difference Time-Domain method 2nd Ed, (Artech House, Boston, 2000).
2-6. 黃弘毅,「奈米金屬狹縫之光穿透增益研究」,國立中央大學,碩士論文,民國96年。
2-7. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396-402 (1902).
2-8. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfield’s waves),” J. Opt. Soc. Am. 31, 213-222 (1941).
2-9. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275-1297 (1965).
2-10. H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782 (1998).
2-11. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Exp. 16, 16529-16537 (2008).
2-12. R. D. Kekatpure, A. C. Hryciw, E. S. Barnard, and M. L. Brongersma, “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Exp. 17, 24112-24129 (2009).
2-13. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
2-14. C. Y. Chen, J. Y. Wang, F. J. Tsai, Y. C. Lu, Y. W. Kiang, and C. C. Yang, “Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors,” Opt. Exp. 17, 14186-14198 (2009).
2-15. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83, 4625-4627 (2003).
2-16. J. Morris, R. R. Arya, J. G. O’Dowd, and S. Wiedeman, “Absorption enhancement in hydrogenated amorphous silicon-based solar cells,” J. Appl. Phys. 67, 1079-1087 (1990).
2-17. A. Bielawny, C. Rockstuhl, F. Lederer and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Exp. 17, 8439-8446 (2009).
2-18. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media 2nd edition, (Pergamon, Oxford, 1984), Chap. IX.
2-19. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
2-20. C. Rockstuhi, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104, 123102 (2008).
2-21. P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693-3723 (2003).
2-22. M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Exp. 16, 5385-5396 (2008).
3-1. H. C. Norberto and M. A. Arturo, “Simulation of hetero-junction silicon solar cells with AMPS-1D,” Sol. Energy Mater. Sol. Cells 94, 62-67 (2009).
3-2. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
3-3. D. Thorp, P. Campbell, and S. R. Wenham, “Conformal films for light-trapping in thin silicon solar cells,” Prog. Photovolt. Res. Appl. 4, 205-224 (1996).
3-4. C. Heine, and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34, 2476-2482 (1995).
3-5. J. Zettner, M. Thonissen, T. Hierl, R. Brendel, and M. Schulz, “Novel porous silicon backside light reflector for thin silicon solar cell,” Prog. Photovolt. Res. Appl. 6, 423-432 (1998).
3-6. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111-111113 (2006).
3-7. E. D. Palik ed., Handbook of optical constants of solids, Academic Press, San Diego (1985).
3-8. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504-3509 (2009).
3-9. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
3-10. T. Sikola, R. D. Kekatpure, E. S. Barnard, J. S. White, P. Van Dorpe, L. Brinek, O. Tomanec, J. Zlamal, D. Y. Lei, Y. Sonnefraud, S. A. Maier, J. Humlicek, and M. L. Brongersma, “Mid-IR plasmonic antennas on silicon-rich oxinitride absorbing substrates: nonlinear scaling of resonance wavelengths with antenna length,” Appl. Phys. Lett. 95, 253109 (2009).
3-11. I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96, 153501 (2010).
3-12. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2,” Langmuir 25, 2596-2600 (2009).
3-13. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Exp. 16, 21793-21800 (2008).
3-14. M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440-441 (2010).
3-15. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205-213 (2010).
3-16. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193-204 (2010).
3-17. C. M. Wang, C. C. Chao, H. I. Huang, B. Ung, Y. Sheng, J. Y. Chang , “Transmission enhancement through a metallic slit assisted by low scattering loss corrugations,” Opt. Commun. 281, 2996-2999 (2008).
3-18. M. Kuttge, F. J. G. Abajo, and A. Polman, “How grooves reflect and confine surface plasmon polaritons,” Opt. Exp. 17, 10385-10392 (2009).
3-19. J. S. Q. Liu, J. S. White, S. Fan, and M. L. Brongersma, “Side-coupled cavity model for surface plasmon polariton transmission across a groove,” Opt. Exp. 17, 17837-17848 (2009).
3-20. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Exp. 12, 3629-3651 (2004).
3-21. M. W. Kowarz, “Homogeneous and evanescent contributions in scalar near-field diffraction,” Appl. Opt. 34, 3055-3063 (1995).
3-22. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686-688 (2009).
3-23. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Solar Energy Mater. Solar Cells 61, 97-105 (2000).
4-1. Yu. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 107-113 (2009).
4-2. Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?,” Appl. Phys. Lett. 96, 073111 (2010).
4-3. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009).
4-4. Yu. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Exp. 17, 10195-10205 (2009).
4-5. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells”, Opt. Lett. 34, 3725-3727 (2009).
4-6. J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Exp. 18, 2682-2694 (2010).
4-7. A. P. Hibbins, W. A. Hurray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74, 073408 (2006).
4-8. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74, 155435 (2006).
4-9. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006).
4-10. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings” Opt. Exp. 16, 7969-7975 (2008).
4-11. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
4-12. C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
4-13. C. Hagglund and B. Kasemo, “Nanoparticle plasmonics for 2D-photovoltaics: mechanism, optimization and limits,” Opt. Exp. 17, 11944-11957 (2009).
4-14. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
4-15. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
4-16. H. Mertens and A. Polman, “Strong luminescence quantum-efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes,” J. Appl. Phys. 105, 044302 (2009).
4-17. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009)
4-18. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391-4397 (2008).
4-19. P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells,” Opt. Exp. 17, 20975-20990 (2009).
4-20. M. Zeman, R. A. C. M. M. van Swaaij, and J. W. Metselaar, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys. 88, 6436-6443 (2000).
4-21. M. A. Green, “Do built-in fields improve solar cell performance?,” Prog. Photovolt. Res. Appl. 17, 57-66 (2009).
4-22. J. Nelson, The physics of solar cells, (Imperial College, London, 2003).
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2010-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明