參考文獻 |
21
Reference
1. Amanda B. Spurdle, et al,. A Systematic Approach to Analysing Gene-Gene Interactions:
Polymorphisms at the Microsomal Epoxide Hydrolase EPHX and Glutathione S-transferase
GSTM1, GSTT1,and GSTP1 Loci and Breast Cancer Risk. Cancer Epidemiol Biomarkers Prev,
2007. 16(4).
2. Laurent Briollais, et al,. Methodological issues in detecting gene-gene interactions in
breast cancer susceptibility: a population-based study in Ontario. BMC Medicine 2007.
5(22): p. 1-15.
3. Kanehisa, M., Toward Pathway Engineering:A New Database of Genetic and Molecular
Pathways, in Institute for Chemical Research, Kyoto University.
4. 楊永正, 未來的生物資學. 科學發展. Vol. 396 期. 2005.
5. Michael P. Cary, et al,. Pathway information for systems biology. FEBS 2005: p.
1815–1820.
6. Wheeler DL, et al,. Database resources of the National Center for Biotechnology
Information. Nucleic Acids Research, 2000 28(1): p. 39-45.
7. Martijn P van Iersel, et al,. Presenting and exploring biological pathways with PathVisio.
BMC Bioinformatics, 2008. 9(399): p. 1-9.
8. G. Joshi-Tope, et al,. Reactome: a knowledgebase of biological pathways. Nucleic Acids
Research, 2005. 33: p. D428-432.
9. Kurt W. Kohn, et al,. Molecular Interaction Maps of Bioregulatory Networks:A General
Rubric for Systems Biology. Molecular Biology of the Cell, 2006. 17: p. 1-13.
10. Ziv Bar-Josdeph, et al,. Computation discovery of gene modules ad regulatory networks.
nature biotechnology, 2003: p. 1-7.
11. Paul Shannon, et al,. Cytoscape: A Software Environment for Integrated Models of
Biomolecular Interaction Networks. Genome Research, 2003. 13: p. 2498-2504
12. Virginia Goss Tusher , et al,. Significance analysis of microarrays applied to the ionizing
radiation response. PNAS, 2001. 98(9 ): p. 5116–5121.
13. Minoru Kanehisa, et al,. From genomics to chemical genomics: new developments in
KEGG. Nucleic Acids Research, 2005. 34: p. D354-357.
14. Minoru Kanehisa, et al,. Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids
Research 2000. 28(1): p. 27-30.
15. Minoru Kanehisa, et al,. KEGG for representation and analysis of molecular networks
involving diseases and drugs. Nucleic Acids Research, 2010. 38: p. 355-360.
16. Thorbergur Ho«gnason, et al,. Epidermal growth factor receptor induced
apoptosis:potentiation by inhibition of Ras signaling. FEBS Letters, 2001. 491 p. 9-15.
17. Laura K. Shawver, D.S.a.A.U., Smart drugs:Tyrosine kinase inhibitors in cancer therapy.
CANCER CELL, 2002. 1: p. 117-123.
18. Nicola Personeni, et al,. Clinical Usefulness of EGFR Gene Copy Number as a Predictive
Marker in Colorectal Cancer PatientsTreated with Cetuximab:A Fluorescent In situ
Hybridization Study. Clin Cancer Res, 2008. 14(18).
19. Wade S. Samowitz, et al,. Relationship of Ki-ras Mutations in Colon Cancers to Tumor
Location,Stage, and Survival:A Population-based Study. Cancer Epidemiology, 2000. 9( ):
22
p. p1193-1197.
20. Takashi Nishikawa, et al,. A simple method of detecting K-ras point mutations in stool
samples for colorectal cancer screening using one-step polymerase chain
reaction/restriction fragment length olymorphism analysis. Clinica Chimica Acta 2002.
318: p. p107-112.
21. V.Bazan , et al,. Specific codon 13 K-ras mutations are predictive of clinical outcome in
colorectal cancer patient,whereas codon 12 K-ras mutation are associated with mucinous
histotype. Annals of Oncology, 2002. 13: p. 1438-1446.
22. Federico A. Monzon, et al.,, The Role of KRAS Mutation Testing in the Management of
Patients With Metastatic Colorectal Cancer. Arch Pathol Lab Med, 2009. 133: p.
p.1600-1606.
23. Bos, J.L., ras oncogenes in human cancer: a review. Cancer Res., 1989.
49(17): p. p4682–4689.
24. Mirian Brink, et al,. K-ras oncogene mutations in sporadic colorectal cancer in The
Netherlands Cohort Study. Carcinogenesis, 2003. 24: p. p703-710.
25. Astrid Lie`vre, et al.,, KRAS mutation status is predictive of responce to cetuximab therapy
in colorectal cancer. Aacrjournal,, 2006. 66(8): p. p.3992-3995.
26. H. Jervoise N. Andreyev, et al,. Kirsten ras Mutations in Patients With Colorectal Cancer:
the Multicenter ``RASCAL' Study. Journal of the National Cancer Institute, 1998. 9: p.
p675-684.
27. Suzanne Schubbert, et al,. Hyperactive Ras in developmental disorders and cancer.
Nature Reviews Cancer, 2007. 7 p. p295-308.
28. Pellicer, M.M.a.A., RAS PATHWAYS TO CELL CYCLE CONTROL AND CELL TRANSFORMATION.
Frontiers in Bioscience, 98: p. p887-912.
29. Gil Chu, et al,. SAM “Significance Analysis of Microarrays”.
30. Virginia Goss Tusher , e.a., . Significance analysis of microarrays. 2008.
31. K. L. Woodford-Richens, et al,. SMAD4 mutations in colorectal cancer probably occur
before chromosomal instability, but after divergence of the microsatellite instability
pathway. PNAS Early Edition, 2001 98( 17 ): p. 9719±9723.
32. SANCHO, E., Molecular mechanisms involved in the initiation and progression of
colorectal cancer. Scientific Report Oncology Programme, 2008 p. 132-35.
33. Thomas J. Lynch, M.D., ,et al,. Activating Mutations in the Epidermal Growth Factor
Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. N Engl J
Med, 2004. 350: p. 2129-39.
34. Napoleone Ferrara, H.-P.G.J.L., The biology of VEGF and its receptors. NATURE MEDICINE
2003. 9(6): p. 669-676.
35. Nabendu Pore, et al,. EGFR Tyrosine Kinase Inhibitors Decrease VEGF Expression by Both
Hypoxia-Inducible Factor (HIF)-1–Independent and HIF-1–Dependent Mechanisms.
Cancer Res, 2006. 66(6).
36. F Chang, et al,. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and
neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003. 17: p.
590-603.
37. Morgan, D.M.L., Tetrazolium (MTT) Assay for Cellular Viability and Activity. Vol. 79. 1998.
p179-184.
23
38. Minaxi Jhawer, et al,. PIK3CA Mutation/PTEN Expression Status Predicts Response of
Colon Cancer Cells to the Epidermal Growth Factor Receptor Inhibitor Cetuximab.
Cancer Res, 2008;. 68(6): p. p1953-61.
39. Rossella Solmi, et al,. Displayed correlation between gene expression profiles and
submicroscopic alterations in response to cetuximab, gefitinib and EGF in human colon
cancer cell lines. BMC Cancer, 2008. 8(227 ).
40. Alberto Bardelli, et al,. Mutational Analysis of the Tyrosine Kinome in Colorectal Cancers.
SCIENCE 2003. 300.
41. Susumu Kobayashi, M.D., ,et al,. EGFR Mutation and Resistance of Non–Small-Cell Lung
Cancer to Gefitinib. N Engl J Med, 2005. 352: p. 786-92.
42. Mauro Moroni, et al,. Gene copy number for epidermal growth factor receptor (EGFR)
and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet
Oncol, 2005. 6: p. p279-286.
43. Thomas J. Lynch, M.D., ,et al,. Activating Mutations in the Epidermal Growth Factor
Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. N Engl J
Med 2004. 350: p. 2129-39.
44. Rafael Rosell, et al,. Epidermal Growth Factor Receptor Activation: How Exon 19 and 21
Mutations Changed Our Understanding of the Pathway. Clin Cancer Res, 2006. 12(24).
45. Liu, Z., Hetero-stagger cloning: efficient and rapid cloning of PCR products. Nucleic Acids
Research, 1996. 24(12): p. 2458-59.
46. Svetlana Baranovskaya, et al,. Down-regulation of Epidermal Growth Factor Receptor by
Selective Expansion of a 5-End Regulatory Dinucleotide Repeat in Colon Cancer
withMicrosatellite Instability. Clin Cancer Res, 2009. 15(14): p. 4531-37.
47. Chun-Hau Chen, et al,. Bidirectional signals transduced by DAPK–ERK interaction promote
the apoptotic effect of DAPK. The EMBO Journal 2005. 24: p. 294-304.
48. Jing Yuan Fang, B.C.R., The MAPK signalling pathways and colorectal cancer. Lancet Oncol,
2005. 6 p. 322-27.
49. Ziqiang Yuan, et al,. An A13 Repeat within the 3-Untranslated Region of Epidermal
Growth Factor Receptor (EGFR) Is Frequently Mutated in Microsatellite Instability Colon
Cancers and Is Associated with Increased EGFR Expression. Cancer Res 2009. 69(19).
50. Hillier, L.W., The DNA sequence of human chromosome 7. NATURE 2003 424 p. 157-63.
51. Poulikos I. Poulikakos, et al,. RAF inhibitors transactivate RAF dimers and ERK signalling in
cells with wild-type BRAF. nature biotechnology, 2010. 464: p. 427-30.
52. RAMESH M. RAY, S.A.M.C.C., AND LEONARD R. JOHNSON, Polyamine depletion arrests
growth of IEC-6 and Caco-2 cells by different mechanisms. Am J Physiol Gastrointest Liver
Physiol 2001. 281: p. 37-43.
53. Silvia Fre, et al,. Notch and Wnt signals cooperatively control cell proliferation and
tumorigenesis in the intestine. PNAS Early Edition, 2009: p. 1-6.
54. Spyros Artavanis-Tsakonas, M.D.R., Robert J. Lake, Notch Signaling: Cell Fate Control and
Signal Integration in Development. SCIENCE 1999. 284
55. Kopan, R., Notch: a membrane bound transcription factor. Journal of Cell Science, 2002.
115: p. 1095-1097.
56. Bruce M. Boman, et al,. Computer Modeling Implicates Stem Cell Overproduction in Colon
Cancer Initiation. CANCER RESEARCH, 2001. 61: p. 8408-11.
24
57. Greenwood, E., Survivin cell death. NATURE REVIEWS | CANCER, 2001. 1.
58. Trevor J Pugh, et al,. Correlations of EGFR mutations and increases in EGFR and HER2
copy number to gefitinib response in a retrospective analysis of lung cancer patients BMC
Cancer, 2007. 7(128).
59. Andrea Sartore-Bianchi, et al,. Epidermal Growth Factor Receptor Gene Copy Number and
Clinical Outcome of Metastatic Colorectal Cancer Treated With Panitumumab Clinical
Oncology, 2007 25: p. 3238-3245.
60. Sanja Dacic, et al,. Significance of EGFR Protein Expression and Gene Amplification in
Non–Small Cell Lung Carcinoma. Am J Clin Pathol, 2006. 125: p. 860-865.
61. MATILDE OLIVE, et al,. Characterization of the DiFi rectal carcinoma cell line derived
from a familial adenomatous polyposis patient. In Vitro Cell. Dev. Biol, 1993. 29A: p.
239-248.
|