博碩士論文 972206014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:3.146.35.53
姓名 陳建誠(Chien-cheng Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究
(Optical characteristics of polymer micro-nano structures on transparent conductive layer in GaN LEDs)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 具45度反射面之非共平面轉折波導光路★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端
★ 具三維光路之光連接發射端模組★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組
★ 建立於矽基光學平台之高分子聚合物波導光路★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製
★ 發光二極體色溫控制技術及其於色序式微型投影機之應用★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模
★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組
★ 利用光展量概念之微型投影機光學設計方法與實作★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組
★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組★ 具垂直耦光45˚矽基反射面之高分子聚合物波導應用於20-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文研究在透明導電層上製作高分子聚合物(Polymer,man2403)微奈米光學結構於氮化鎵發光二極體,使用有限時域差分法(Finite Difference Time Domain,FDTD)光學模擬與製作在固定填充因子(Filling factor)為0.3時改變週期與線寬(分別是週期1.2 μm 線寬0.4 μm(Type II)、週期0.9 μm 線寬0.3 μm(Type III)及週期0.6 μm 線寬0.2 μm(Type IV))的高分子聚合物微奈米光學結構進行發光二極體光型調制研究。
利用FDTD光學模擬各個週期的光型圖,在週期1.2 μm的光型調制行為,正負49度造成較大輻射角度的側向光散逸。在週期0.9 μm的光型調制行為在正負41度有最大的光強度峰值,在週期0.6 μm時的光型調制行為會侷限在正負15度內具有高指向性。
藉由FDTD模擬放置單顆點光源於結構正下方、結構正下方右側邊緣及兩組結構之間方式,更清楚分析高分子聚合物微奈米結構本身及週期排列對於氮化鎵發光二極體光場分佈影響,了解主動層發出的光源經過微奈米結構後光型的調制行為。證實在週期越小(週期0.6 μm)光源有較高的指向性,在週期越大(週期1.2 μm)有較大的輻射角度。
在電特性方面,有無製作高分子聚合物微奈米結構其順向偏壓變異量低於0.62 %。證實在透明導電層上製作高分子聚合物微奈米結構,對發光二極體在順向偏壓的損害甚小。
藉由高分子聚合物微奈米光學結構在不傷害發光二極體的電性下,可以有效達到調制光型與增強光萃取效率的效果,使光型調制成高指向性(正負15度內)與均勻光源(正負30度內)。
摘要(英) In this paper, the light pattern modulation is proposed for polymer (man-2403) micro-nano structures on transparent conductive layer in GaN light-emitting diodes (LEDs). By using the finite difference time domain (FDTD) method and E-beam lithography in the filling factor of 0.3 to discuss the influence of light pattern modulation.
Light pattern modulation of Type II , Type III and Type IV by using FDTD method. Type II : uniform light pattern within ±30° .Type III : maximum of two peak intensities at the angle = ±41°. Type IV : high directional light pattern within ±15°.
The point light source chosen for providing a good resolution for observing the light modulation caused by the polymer micro-nano structures.
The deviation of light pattern between the experimental and simulated results may result from the spatial intensity distribution resolution of Electroluminescence system and the surface roughness of transparent conductive layer.
At an injection current 20 mA, the polymer micro-nano structures on the conductive transparent layer results in an increase of optical output power by 5.97 %, 7.35 %, and 3.77 % for Type II, Type III and Type IV, respectively.
In electrical characteristics, the availability of polymer micro-nano structures made variation of forward bias voltage within 0.62 %. The damage of forward bias voltage was small.
關鍵字(中) ★ 發光二極體
★ 光型調制
關鍵字(英) ★ light emitting diodes
★ light pattern modulation
論文目次 第一章 序論..............................................1
1.1 前言..................................................1
1.2 研究動機與目的........................................4
第二章 透明導電層上之高分子聚合物微奈米結構於氮化鎵發光二極體光學特性分析.........................................12
2.1 以有限時域差分法建構的發光二極體模型.................12
2.2 高分子聚合物微奈米結構對發光二極體的光型調制.........15
2.3 單顆點光源在高分子聚合物微奈米結構的光型調制行為.....19
第三章 透明導電層上高分子聚合物微奈米結構於氮化鎵發光二極體製作...................................................26
3.1氮化鎵發光二極體試片結構..............................26
3.2在透明導電層上製作高分子聚合物微奈米結構於氮化鎵發光二極體實驗流程...............................................28
3.3製作分析與討論........................................31
第四章 發光二極體之光電特性量測及光型量測結果分析.......35
4.1 電流-電壓特性量測結果與分析..........................35
4.2 光強度-電流特性量測結果與分析........................38
4.3 光型量測.............................................42
4.3.1光型量測架設........................................42
4.3.2量測結果與分析討論..................................43
第五章 結論與未來展望...................................46
5.1 結論.................................................46
5.2 未來展望.............................................48
參考文獻.................................................49
參考文獻 [1]史光國,「半導體發光二極體及固體照明」,全華科技圖書股份有限公司印行,2006.
[2] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett., vol. 67, pp. 1868–1870, 1995.
[3]M. Razeghi and M. Henini, Optoelectronic Devices: III-Nitrides.Amsterdam, The Netherlands: Elsevier, 2004.
[4] H. Morkoç, Nitride Semiconductors and Devices. Berlin, Germany:Springer, 1999.
[5] http://www.ledinside.com.tw/.
[6] M. L. Wu, Y. C. Lee, S. P. Yang, P. S. Lee, and J. Y. Chang, “Azimuthally isotropic irradiance of GaN-based light-emitting diodes with GaN micrlens arrays,” Opt. Express 17, 6148-6155, 2009.
[7] M. R. Krames, G. E. Höfler, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, and M. G. Craford, “High power truncated inverted pyramid AlxGa12x.0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. Vol. 75, pp. 2365, 1999.
[8] J. Y. Kim, M. K. Kwon, J. P. Kim, and S. J. Park, “ Enhanced Light Extraction From Triangular GaN-Based Light-Emitting Diodes,” IEEE Phot. Tech. Lett., Vol. 19, NO.23, 2007.
[9] Chul Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” Journal of Applied Physics, Vol. 93, No. 11, pp.9383, 2003.
[10] H. Kim, J. Cho, J. W. Lee, S. Yoon, H. Kim, C. Sone, and Y. Park, “Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers, ” Appl. Phys. Lett. Vol. 90, pp. 161110, 2007.
[11] H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin,” Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Institute of physics publishing nanotechnology, vol. 17, 2006.
[12] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, and Y. S. Park, “Enhanced light extraction from GaN-based light emitting diodes with holographically generated two-dimensional photonic crystal patterns.” Appl. Phys. Lett. Vol.87,pp 203508 ,2005.
[13] J. Y. Kim, M. K. Kwon, K. S. Lee, S. J. Park, S. H. Kim , and K. D. Lee,“Enhanced light extraction from GaN-based green light-emitting diode with photonic crystal.” Appl. Phys. Lett. Vol.91,pp 181109 ,2007.
[14] A. David, T. Fuji, B. Moran, S. Nakamrua, S. P. DenBaars , R. Sharma, K. McGroddy, E. L. Hu, and C. Weisbuch ,“Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution.” Appl. Phys. Lett. Vol.88,pp 061124 ,2006.
[15] H. W. Choi, C. W. Jeon, and M. D. Dawson, “ InGaN microring light-emitting diodes,” IEEE Phot. Tech. Lett., Vol. 16, pp 33-35, 2004.
[16] Y. J. Lee, J.M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the Output Power of GaN-Based LEDs Grown on Wet-Etched Patterned Sapphire Substrates,” IEEE Phot. Tech. Lett., Vol. 18, NO.10, 2006.
[17] T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate, ” Optical Society of America, Vol. 15, No. 11, 2007.
[18] S. H. Huang, R. H. Horng, S. C. Hsu, T. Y. Chen, and D. S. Wuu, “Surface Texturing for Wafer-Bonded Vertical-Type GaN/Mirror/Si Light Emitting Diodes, ” Jpn. J. Appl. Phys, Vol. 44, No. 5A, 2005.
[19] S. H. Huang, R. H. Horng, S. L. Li, K. W. Yen, D. S. Wuu, C. K. Lin, and H. Liu, “ Thermally Stable Mirror Structures for Vertical-Conducting GaN/Mirror/Si Light-Emitting Diodes,” IEEE Phot. Tech. Lett., Vol. 19, pp 1913-1915, 2007.
[20] Y. Sun, T. Yu, Z. Chen, X. Kang, S. Qi, M. Li, G. Lian, S. Huang, R. Xie, and G. Zhang, “Properties of GaN-based light-emitting diode thin film chips fabricated by laser lift-off and transferred to Cu,” Semicond. Sci. Technol. 23 ,2008.
[21] C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of Flip-Chip Light-Emitting Diodes With Omni-Directional Reflector and Textured Micropillar Arrays,” IEEE Phot. Tech. Lett., Vol. 19, pp 1200-1202, 2007.
[22] C. E. Lee, Y. C. Lee, H. C. Kuo, M. R. Tsai, T. C. Lu, and S. C. Wang, “High brightness GaN-based flip-chip light-emitting diodes by adopting geometric sapphire shaping structure,” Semicond. Sci. Technol. 23 ,2008.
[23] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames,“High performance thin-film flip-chip InGaN-GaN light-emitting diodes.” Appl. Phys. Lett. Vol.89,pp 071109 ,2006.
[24] E. Fred Schubert,「Light – Emitting Diodes」.Cambridge, U.K:Cambridge Univ. Press, 2006.
[25] H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson,“GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses.” Appl. Phys. Lett. Vol.89,pp 071109 ,2006.
[26] M. D. B. Charlton, M. E. Zoorob, and T. Lee,“Photonic Quasi-Crystal LEDs Design, modeling, and optimization.” Proc. SPIE 6486, 64860R-1-64860E-10 ,2007.
[27] M. A. Tsai, P. Yu, C. L. Chao, C. H. Chiu, H. C. Kuo, S. H. Lin, J. J. Huang, T. C. Lu, and S. C. Wang, “Efficiency Enhancement and Beam Shaping of GaN–InGaN Vertical-Injection Light-Emitting Diodes via High-Aspect-Ratio Nanorod Arrays,” IEEE Phot. Tech. Lett., Vol. 21, pp 257-259, 2009.
[28] Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High Light-Extraction GaN-Based Vertical LEDs With Double Diffuse Surfaces,” IEEE Journal of Quantum Electronics., Vol. 42, pp 1196-1201, 2006.
[29] T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung,“ Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography.” Appl. Phys. Lett. Vol.91,pp 171114 ,2007.
指導教授 伍茂仁(Mount-Learn Wu) 審核日期 2010-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明