博碩士論文 962202034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.226.96.61
姓名 林巧雯(Chew-Wen Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應
(STM tip-induced local oxidation on the NiAl(100) substrate)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象★ 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用穿隧式電子顯微鏡(scanning tunneling microscopy, STM)在低曝氧量的鎳鋁合晶表面上進行蝕刻的實驗。首先發現氧化條紋的產生會以兩種不同的模式出現。其一是在低功率(降低偏壓)條件下,氧化條紋會出現在部分的掃描範圍內,但是出現的位置是我們無法預測的。另一種是在高功率(增高穿隧電流)條件下,氧化條紋生成的位置可以被移動的探針來控制。接著實驗利用高功率條件控制氧化條紋生成,發現條紋生成的寬度、高度特性會隨著增加外加偏壓、穿隧電流和樣品溫度而增長,不過當探針與表面間的距離超過某一限定的高度後,條紋的寬度會變窄,甚至沒有條紋生成。另外不同種的反應物也會影響氧化條紋的生成特性。在此實驗顯示曝水氣(H2O)會比曝氧氣(O2)能產生更寬且更高的氧化條紋。此外,在我們的實驗中發現最精細的氧化條紋寬度為3 nm。
摘要(英) Nano – strips formation produced on pre-oxidation surface and a NiAl (100) substrate, caused by STM tip under constant current feedback in ultrathin vacuum (UHV) conditions is reported. Firstly, we lower the tip toward the surface by either decreasing the bias or increasing the tunneling current. The former uses a lower power and the Al2O3 pattern is formed through a self-organized manner, exhibiting an Al2O3 strip of width as small as 3 nm, but locations of the strips can’t be predicted. The later uses a higher power; although broader Al2O3 strips (about 8 nm wide), the patterns can be controlled by the tip motion. Then we use the higher power approach to discuss the mechanism that is clarified through evolution of the grown Al2O3 strip with the bias voltage, tunneling current, temperature (100 K and 300 K) and reactants (oxygen / water). Generally, the width increases little with the bias. The width always increases with the tunneling current. At a higher temperature (~300 K), the strip can be grown with a power (I x V) smaller than that at a lower temperature (~100 K). The strips can also be grown in a water-rich environment (humidity 80 %) with a power smaller than that in an oxygen-rich environment.
關鍵字(中) ★ 氧化鋁
★ 氧化反應
★ 蝕刻
★ 穿隧式電子顯微鏡
關鍵字(英) ★ STM
★ oxidation
★ lithography
★ alumina
論文目次 Chapter 1 Introduction ............................................ 1
Reference ............................................... 3
Chapter 2 Literature Survey ............................. 4
2.1 Scanning Probe Lithography (SPL) .................... 4
2.1.1 Near - field Scanning Optical Microscopy (NSOM) ... 4
2.1.2 Atomic Force Microscopy (AFM) ..................... 7
2.1.3 Scanning Tunneling Microscopy (STM) .............. 11
2.2 Scanning Probe Lithography (SPL) on Al2O3 films..... 15
2.3 Previous Research about NiAl ....................... 18
2.3.1 Characteristic of NiAl (100) ..................... 18
2.3.2 Oxidation of NiAl (100) surface .................. 20
Reference .............................................. 24
Chapter 3 Experimental Apparatus and Theory ............ 26
3.1 Ultra-high Vacuum (UHV) system ..................... 26
3.1.1 What is the vacuum? .............................. 26
3.1.2 How to design the UHV system ..................... 26
3.1.3 Experimental apparatus (used in Lab.) ............ 31
3.1.4 RHK-300 STM in experiment ........................ 31
3.2 Scanning Tunneling Microscopy (STM) ................ 34
3.2.1 Operation principles of STM ...................... 34
3.2.2 Operation of STM ................................. 36
3.3 Experimental Methods ............................... 39
3.3.1 Sample cleaning .................................. 39
3.3.2 Oxygen and water exposure ........................ 41
3.3.3 Lithography ...................................... 41
3.3.4 Preparing the STM tips ........................... 42
Reference .............................................. 43
Chapter 4 Result and Discussion ........................ 44
4.1 STM tip induced Al2O3 strips ....................... 44
4.1.1 Lower power approach ............................. 44
4.1.2 High power approach .............................. 48
4.2 Controlling the growth of Al2O3 strips ............. 52
4.3 Pits formation after doing the lithography ......... 64
4.4 The tip’s shape before and after the lithography... 66
Reference .............................................. 67
Chapter 5 Conclusion ................................... 68
參考文獻 Chapter 1 reference:
[1] J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennet, Appl. Phys. Lett. 56, 2001 (1990)
[2] E. S. Snow and P. M. Campbell, Appl. Phys. Lett. 64, 1932 (1994)
[3] B. G. Park and T. D. Lee, IEEE Trans. Magn. 35, 2919 (1999)
[4] T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995)
[5] J. Kolodzey, E. A. Chowdhury, T. N. Adam, G. Qui, I. Rau, J. O. Olowolafe, J. S.
Suehle, and Y. Chen, IEEE Trans. Electron Devices 47, 121 (2000)
[6] E. S. Snow, D. Park, and P. M. Campbell, Appl. Phys. Lett. 69, 269 (1996)
Chapter 2 reference:
[1] Handbook of Microscopy for Nanotechnology(chapter 5) Yao, Nan; Wang, Zhong Lin (Eds.) 2005,
[2]Stephane Davy, Michel Spajer / Apply Physic Letter 69, No. 22(1996)
[3]Steen Madsen / Apply Physic Letter 69, No. 4(1996) [4]Igor I. Smolyaninov, David L. Mazzoni, Christopher C. vis / Apply Physic Letter 67, No. 26(1995)
[5] S. I. Bozhevolnyi, I. I. Smolyaninov, and O. Keller / Appl. Opt. 34, 3793 (1995)
[6]E. S. Snow and P.M. Campbell / Apply Physic Letter 64, No.15 (1994)
[7]P. M. Campbell, E. S. Snow, and P. J. McMarr / Apply Physic Letter 66, No.11 (1995)
[8]E. S. Snow, and P. M. Campbell / SCIENCE, Vol. 270, 8 December (1995)
[9]J. A. Dagata / SCIENCE, Vol. 270, 8 December (1995) [10]E. S. Snow, D. Park, and P. M. Campbell / Apply Physic tter 69, No.2 (1996)
[11]Phaedon Avouris, Tobias Hertel, and Richard Martel / Apply Physic Letter 71, No.2 (1997)
[12]S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate / Apply Physic Letter 73, No.12 (1998)
[13]Ricardo Garcia, and Montserrat Callejia / Apply Physic Letter 72, No.18 (1998)
[14]Monttserrat Calleja and Ricardo Garcia / Apply Physic Letter 76, No.23 (2000)
[15]J. A. Dagata / Apply Physic Letter 73, No.2 (1998)
[16]Y. R. Ma, C. Yu, Y. D. Yao, and S. F. Lee / Physical Review B 64, 195324 (2001)
[17]Z. J. Davis, G. Abadal, O. Hansen, X. Borise, N. Barniol, F. Perez-Murano, and A. Boisen / Science Direct, Ultramicroscopy 97, 467-472 (2003)
[18] S. C. Minne, G. Yaralioglu, S. R. Manalis, J. D. Adams, J. Zesch, A. Atalar and C. F. Quate, Apply Physic Letter 72, 2340 (1998)
[19]J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett / Apply Physic Letter 56, No.20 (1990)
[20]Hiroyuki Sugumura, Tatsuya Uchida, Noboru Kitamura, and Hiroshi Masuhara / Apply Physic Letter 63, No.9 (1993)
[21]J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln / Apply Physic Letter 64, No.15 (1994)
[22]K. Matsumoto, M. Ishii, K. Segawa, and Y. Oka / Apply Physic Letter 68, No.1 (1996)
[23]D. Stievenard, P. A. Fontaine, and E. Dubois / Apply Physic Letter 70, No.24 (1997)
[24]J. W. Lyding, K. Hess, G. C. Abeln, D. S. Thompson, J. S. Moore, M. C. Hersam, E. T. Foley, J. Lee, Z. Chen, S. T. Hwang, H. Choi, Ph. Avouris, I. C. Kizilyalli / Applied Surface Science 130-132 (1998) 221-230
[25]M. C. Hersam, G. C. Abeln, and J. W. Lyding / Microelectronic Engineering 47 (1999) 235-237
[26] R. Franchy / Surface Science Reports 38 (2000) 195-294
[27] P.Gassmann et al. /Surface Science 319(1994)95-109
[28] R.-P. Blum, D. Ahlbehrendt, H. Niehus / Surface Science 366 (1996) 107-120
[29] D.R. Mullins, S.H. Overbury / Surface Science 199 (1988) 141-153
[30]Ralf-Peter Blum, Dirk Ahlbehrendt, Horst Niehus / Surface Science 396 (1998) 176-188
[31] R.-P. Blum, H. Niehus / Apply Physic. A 66, S529-S533 (1998)
[32] Nicolas Fremy, Vincent Maurice, and Philippe Marcus, J. Am. Cheram. Soc, 86, No. 4 (2003) 669-675
[33] R.C. Weast, M.J. Astle (Eds.), CRC Handbook of Chemistry and Physics, 59th Edition, CRC Press, Boca Raton, FL, 1978–1979
[34] M.S. Zei *, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo / Surface Science 600 (2006) 1942–1951
[35] N. P. Magtoto, C. Niu, B. M. Ekstrom, S. Addepalli, and J. A. Kelber / Applied Physics Letters 77, No.14 (2000)
[36] N. P. Magtoto, C. Niu, M. Anzaldua, J. A. Kelber, D. R. Jennison / Surface Science 472 (2001) L157-L163
[37] D. Haefliger, A. Stemmer / Science Direct, Ultramicroscopy 100 (2004) 457-464
Chapter 3 reference:
[1]真空技術與應用, VACUUM TECHNOLOGY & APPLICATION 行政院國家科學委員會精密儀器發展中心出版
[2] Hands Luth, Surfaces and Interfaces of Solids, 1993
[3] John B. Hudson, Surface Science An Introduction, 1998
[4] User’s guide of RHK-UHV 300
[5]G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel: Appl. Phys. Lett. 40, 178(1982); Phys. Rev. Lett. 50, 120(1983)
[6]Stephen Gasiorowicz, Quantum Physic, 3rd edition, 2003
[7] SPECS, IQE 11/35 Ion Source Manual
[8] A. J. Melmed, J. Vac. Sci. B9, 601 (1991)
[9] J. P. Ibe, P. P. Bey, Jr., S. L. Brandow, R.A. Brizzolara, N.A. Burnham, D. P. DiLella, K.P. Lee, C. R. K. Marrian, and R. J. Colton, J. Vac. Sci.Technol.A 8 (1990) 4
Chapter 4 reference:
[1] C. Xu, D. W. Goodman / Chem. Phys. Lett. 263, 13-18 (1996)
[2] N. P. Magtoto, C. Niu, B. M. Ekstrom, S. Addepalli, and J. A. Kelber / Appl. Phys. Lett, Vol. 77, No. 14 (2000)
[3] N. P. Magtoto, C. Niu, B. M. Ekstrom, S. Addepalli, and J. A. Kelber / Surf. Sci. 472, L157-L163 (2001)
[4] Phaedon Avouris / Acc. Chem. Res. No.28, 95-102 (1995)
[5] B. N. J. Persson / Phys. Scripta. Vol. 38, 282-290 (1988)
[6] R. P. Blum, D. Ahlbehrendt, H. Niehus / Surf. Sci. 396, 176-188 (1998)
[7] Wikipedia / Water (data page)
[8] Wikipedia / Bond dissociation energy (Tabulated data)
[9] Mark Mostoller, R. M. Nicklow, and D. M. Zehner / Physical review B, Vol. 40, No. 5, 2856-2872 (1989)
[10] R. M. Koros, J. M. Deckers, R. P. Andres and M. Boudart / Chemical Engineering Science, Vol. 21, issue 10, 941-950 (1966)
[11] A. N. Artsyukhovich, V. A. Ukraintsev, I. Harrison / Surface Science 347, 303-318 (1996)
[12] H. Steininger, S. Lehwald and H. Ibach / Surf. Sci. 123 (1982) 1.
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2010-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明