博碩士論文 972202013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.145.104.139
姓名 熊德智(Te-Chih Hsiung)  查詢紙本館藏   畢業系所 物理學系
論文名稱 硒化鐵奈米微粒之超導及碲化鉍奈米線之熱電物性研究
(The study of superconductivity in FeSex nanoparticlesand thermoelectric properties in Bi2Te3 nanowires)
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 2008年吳茂昆院士的研究團隊發現了新的「鐵基超導體」(FeSe),其超導溫度TC約為8 K,當溫度低於90 K時會伴隨著結構相變從Tetragonal變為Orthorhombic結構,且隨著外加壓力至7 GPa超導溫度TC從8 K提升至37 K。二維FeSe之薄膜鍍於不同溫度的基板其超導溫度TC與膜厚的關係也有顯著的差異。鍍於320℃基板,薄膜容易沿著C軸成長,隨著膜厚減小超導溫度Tc也有降低的趨勢;於500℃基板上成長FeSe薄膜,其容易沿著(101)方向成長,超導溫度Tc不易隨膜厚而改變。本文研究一維FeSex奈米微粒其磁性以及熱力學等物理性質與塊材、薄膜樣品比較。藉由脈衝雷射將塊材FeSex製作成奈米微粒。並將X光繞射數據利用GSAS軟體擬合,擬合結果指出奈米微粒中包含了FeSe之tetragonal、 hexagonal結構,純鐵、純硒以及氧化鐵。從高解析度穿透式電子顯微鏡以及選區電子繞射之結果可得知FeSex –tetragonal結構奈米微粒粒徑分部約為5 nm。從300 至10 K變溫X光繞射實驗中FeSex –tetragonal結構之奈米微粒並未發生結構相轉變。
溫室氣體排放量持續增高以及能源逐漸短缺,新興能源不斷被開發,也因此熱電材料逐漸地被廣泛研究。在室溫下常見的熱電材料以Bi2Te3¬最為廣泛研究,故本文研究Bi2Te3¬單晶奈米線製備方式以及
量測單根奈米線之熱電性質(電阻率、Seebeck係數、熱傳導率)。本研究之Bi2Te3奈米線為Rhombohedral結構並沿(110)方向成長,於直徑150 nm之奈米線其電阻率(ρ=5.16 μΩ-m)小於塊材一倍。然而奈米線Seebeck係數之絕對值(S= 43.44μV/K)低於塊材(S= 213.84μV/K),其主因為Seebeck係數容易受到Bi與Te原子百分比知些微差異而有劇烈變化。本文研究結果發現奈米線之熱電優質係數ZT座落於0.12~0.34之間。
摘要(英) In 2008, a novel Iron-based superconductor-FeSe was discovered by M.K. Wu. The superconductor has a transition temperature, Tc, of around 8 K. It is accompanied by a structural phase change, from Tetragonal to Orthorhombic, as the temperature lowers below 90 K. Moreover, with applied pressures up to 7 Gpa, an increase in Tc, to 37 K, was observed. In two dimensional FeSex thin films, the superconducting properties change with deposition temperature. Films grown at 320°C prefer to orient along the c-axis, and its Tc decreased with film thickness. Contrasting this, films grown at 500°C orient aptly along the (101) direction without obvious thickness dependence. In this investigation the magnetic and thermal properties of one dimensional FeSex nanoparticles were studied; the results were compared to bulk. The nanoparticles were fabricated using pulse laser deposition (PLD) using bulk FeSex targets. Refinements of X-ray diffraction (XRD) data were performed using GSAS software. The results revealed the nanoparticles composition: phases of tetragonal and hexagonal FeSe, pure iron, pure selenium, and FeO. The sizes of nanoparticles are about 5 nm in tetragonal FeSe, as confirmed by transmission electron microscopy (TEM) and Selected Area Electron Diffraction Pattern (SAED). Structural phase transition was not observed in nanoparticles. The particles maintained its tetragonal phase from temperatures around 300 K down to 10 K.
With the perpetuating increase in green house gases and the gradual shortage of conventional energy sources, new and more efficient energy substitute is unceasingly being developed and sought after. Below room temperature, the thermoelectric material Bi2Te3 is one such candidate widely studied. In this investigation, the fabrication of single crystal Bi2Te3 nanowires is studied along with the TE properties of a single nanowire (Seebeck coefficient, resistance, and thermal conductivity).
In this study, Rhombohedral structured Bi2Te3 nanowires grown along (110) direction were prepared. The typical resistivity of the as prepared nanowires (150 nm in diameter) was around 5.16 μΩ-m, half that of its bulk counterpart. However, the absolute value of Seebeck coefficient in the nanowires (S= 43.44μV/K) is lower than the bulk value (S= 213.84μV/K).This is due to the sensitivity of Seebeck coefficient to the atomic composition of Bi and Te. From our results, ZT values in the range of 0.12~0.34 were obtained.
關鍵字(中) ★ 碲化鉍
★ 奈米線
★ 超導
★ 硒化鐵
★ 奈米微粒
★ 熱電
關鍵字(英) ★ superconductivity
★ thermoelectric
★ FeSe
★ nanoparticles
★ nanowires
★ Bi2Te3
論文目次 摘要…………………………………………………………………Ⅰ
Abstract …………………………………………………………Ⅱ
致謝 ………………………………………………………………Ⅲ
目錄 ……………………………………………………………IV
圖目錄 ……………………………………………………………ⅤII
表目錄 ……………………………………………………………XII
第一章 導論
1-1 研究動機…………………………………………………………1
1-2 超導體簡介………………………………………………………4
1-3 熱電材料簡介……………………………………………………9
第二章 基本原理
2-1 低溫比熱原理 …………………………………………………11
2-1-1電子比熱 ……………………………………………………12
2-1-2聲子比熱 ………………………………………………………13
2-2磁比熱
2-2-1 鐵磁性 ………………………………………………………14
2-2-1 反鐵磁性 ……………………………………………………15
2-3 磁性熵 …………………………………………………………16
2-4超導態的熱力學 ………………………………………………17
2-5 熱電效應…………………………………………………………23
2-6 熱電材料的優質係數……………………………………………26
2-7 熱電材料分類與應用……………………………………………28
2-8 熱傳導……………………………………………………………29
第三章 硒化鐵奈米微粒製作、量測及分析
3-1 FeSex塊材製作……………………………………………………31
3-2 FeSex奈米微粒製作………………………………………………33
3-3 FeSex樣品量測
3-3-1 XRD (X-Ray Diffraction)量測 …………………………35
3-3-2 結構精算簡介(GSAS)………………………………………37
3-3-3 比熱量測……………………………………………………40
3-3-4 磁性量測……………………………………………………45
3-4 FexSe1-x樣品量測結果及分析
3-4-1 FeSex奈米微粒X-Ray 的分析………………………………48
3-4-2 FeSex奈米微粒TEM量測結果 ………………………………60
3-4-3 FeSex奈米微粒磁性量測結果………………………………62
3-4-4 FeSex奈米微粒比熱量測結果………………………………69
3-5 結論 ………………………………………………………………72
第四章 銻化鉍奈米線製作、量測及分析
4-1 Bi2Te3¬塊材製作 …………………………………………………73
4-2 單晶 Bi2Te3 奈米線製作 ………………………………………74
4-3 量測奈米線 pattern 製作 ……………………………………77
4-4 單根Bi2Te3奈米線電阻、熱傳導、Seebeck係數的量測………80
4-5 Bi2Te3 奈米線TEM 的分析 ……………………………………85
4-6 奈米線電阻、Seebeck係數的分析 ……………………………89
4-7 優值係數之估算…………………………………………………93
4-8 結論………………………………………………………………94
參考資料………………………………………………………………95
參考文獻 [1] C. M. Lin, T. L. Hung, Y. H. Huang, K. T. Wu, M. T. Tang, C. H. Lee, C. T. Chen and Y. Y. Chen, Phys. Rev. B. 75,125426 (2007)
[2] Allon I. Hochbaum et al., NATURE 451, 163(2008)
[3] F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, M. K. Wu, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008)
[4] S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, Phys. Rev. B. 80, 064506 (2009)
[5] 羅吉宗、戴明鳳、林鴻明等編著,奈米科技導論,p2-19(2003)
[6] 何建民,低溫.超導.磁浮,p39-48,(1996)
[7] Kittel, Introduction to Solid State Physics 8 edition
[8] Michael Tinkham, Introduction of superconductivity,p10-12 (1996)
[9] Seebeck, T. J., "Magnetic polarization of metals and minerals"Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 265, 1822-1823
[10] 高鴻志, 熱電材料碲化鉍(Bi1-xSbx)2Te3 之晶體成長與特性
分析, 民國八十九年.
[11] Yang, J. Y., R. G. Chen et al., Journal of Alloys and Compounds 407, 330 (2006).
[12] Yang, J., T. Aizawa et al., Journal of Alloys and Compounds 309, 225 (2000)..
[13] Kim, H. C., T. S. Oh et al., Journal of Physics and Chemistry of
Solids 61, 743. (2000).
[14] Zhou, X. S., Y. Deng et al., Journal of Alloys and Compounds 352, 328 (2003)..
[15] 洪慈蓮,釔鋇銅氧化合物及二鋁化鈰奈米微粒之物性探討,清大
碩士論文,2008
[16] 張裕恆、李玉芝,超導物理,儒林出版社.p55~67, p322 1992.
[17] 陳伯仲,二鈷化鈰奈米微粒之超導、比熱及磁性研究,輔仁大學
碩士論文,2004
[18] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn, Nature 413, 597-602. (2001).
[19] 陳致挺, Bi2Te3塊材與奈米微粒之熱電效率、熱傳導率與比熱之物性研究,淡江大學碩士論文,2004
[20] T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 014522 (2009)
[21] J. Ham, W. Shim, D. H. Kim, S. Lee, J. Roh, S. W. Sohn, K. H. Oh, P. W. Voorhees, and W. Lee, NANO LETTERS. 9, No. 8, 2867 (2009)
[22] H. M. Rietveld, J. Appl. Cryst. 2, 65 (1965).
[23] G. Garbarino, A. Sow, P. Lejay, A. Sulpice, P. Toulemonde, M. Mezouar et al., EPL. 86, 27001 (2009)
[24] M. J. Wang, J.Y. Luo, T.W. Huang, H. H. Chang, T. K. Chen, F. C. Hsu, C. T. Wu, P. M. Wu, A. M. Chang, and M. K. Wu, Phys. Rev. Lett. 103, 117002 (2009)
[25] Karl D. Oyler et al., Chem. Mater., 21 (15), 3655 (2009)
[26] L. Lu, W. Yi, and D. L. Zhang, Rev. Sci. Instrum., 72, 2996 (2001)
[27] Rowe, D. M., Ed. In CRC Handbook of Thermoelectric; CRC Press: New York, 1995.
[28] Cheng-Lung Chen, Yang-Yuan Chen et al., J. Phys. Chem. C, 114, 3385 (2010)
[29] 周宗暉, 重費米化合物CePd2Si2奈米微粒之磁性研究,東華大學碩士論文。
[30] Terry M.Tritt and M.A. Subramanian, MRS BULLETIN, 31,188 (2006)
[31] D. Mendoza et al., Solid State Commun, 150, 1124 (2009)
[32] Jianhua Zhou et al., Appl. Phys. Lett. 87, 133109 (2005)
[33] T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge, Science, 297, 2229 (2002)
[34] Allon I. Hochbaumet al., Nature. 451, 163 (2007)
[35] J. W. Roh, S. Y. Jang, J. Kang, S. Lee, J. S. Noh, W. Kim, J. Park, and W. Lee, Appl. Phys. Lett. 96, 103101 (2010)
指導教授 李文献、陳洋元
(W. H. Li、Y. Y. Chen)
審核日期 2010-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明