博碩士論文 952402004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.142.196.27
姓名 王進威(Chin-Wei Wang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用中子繞射探討多鐵材料之晶體結構及磁結構
(Crystalline and magnetic structures of Multiferroic Compounds Studied by Neutron Diffraction)
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 同時具有鐵磁及鐵電有序的材料稱之為多鐵材料,而其中具有磁性電性交互作用的材料又特稱為磁電材料,此類型的材料在元件設計的應用上具有相當的淺力,依照磁與電的偶合方式來區分主有有兩大類,分別是稀土元素錳氧化物(RMn2O5)以及鉍鐵氧。本論文研究在此兩類型中各取一作為研究對象,鈥鑭錳氧及鉛鉍鐵氧。
本論文主要探討兩樣品的晶格結構以及磁性在摻雜之後所造成的變化。研究方法包含巨觀磁性量測、X光繞射、中子繞射和拉曼光譜等。
在鈥鑭錳氧樣品中,我們發現摻雜濃度達20%時,可以在140K以下開始觀察到新的磁性反應,拉曼散射譜圖在同一溫區也觀察到新的散射峰。此外,低溫長程磁有序的行為也因未摻雜而改變。鉛鉍鐵氧方面發現低溫磁結構也因為鉛的摻雜而改變了,根據中子繞射的數據顯示,磁結構為簡單反鐵磁。
摘要(英) The magnetic susceptibility, x-ray diffraction, neutron diffraction and Raman scattering measurements are employed to study the effects of La-substitution on the magnetic properties of multiferroic HoMn2O5. Both 9% and 18% La-doped compounds crystallize into the same orthorhombic Pbam symmetry as the parent compound. The magnetic responses to an ac driving magnetic field between 40 and 140 K are greatly enhanced by 18% La-doping. The neutron magnetic diffraction patterns reveal the development of short range magnetic correlations below 140 K. In addition, two Raman peaks and a series of new x-ray diffraction peaks suddenly develop below this temperature. Incommensurate long range antiferromagnetic order appears below 38 K. Magnetic frustration could be the main mechanism governing the present observations.
Two Pb-doped BiFeO3 (5% and 10%) compounds were studied. The macroscopic magnetic measurement show the typical feature of the antiferromagnetic material. Weak ferromagnetic signals and the indication of spin reorientation at low temperatures were also observed in the two compounds. The magnetic structures for the two samples are basically simple antiferromagnetic arrangement but the magnetic moment direction is not yet determined. Further studies are still needed for complete understanding of the samples.
關鍵字(中) ★ 多鐵材料
★ 中子繞射
關鍵字(英) ★ mutiferroic
★ neutron diffraction
論文目次 Abstract in English………………………………………………..i
Abstract in Chinese…………………………………………………ii
Acknowledgment……………………………………………………..iii
Table of Contents……………………………………………………………...v
List of Figures………………………………………………………......vii
List of Tables…………………………………………………………………..x
Chapter 1 Introduction……………………………………………………….. 1
1-1 General Properties of RMn2O5…………………………1
1-2 Some Properties of HoMn2O5 and LaMn2O5…………..4
References……………………………………………………………..5
Chapter 2 Experimental………………………………………………………..7
2-1 Neutron Powder Diffraction Basis………………………...7
2-1-1 Rietveld Method……………………………………………………8
2-1-2. Diffraction Intensity from Nuclear Scattering………11
2-1-3. Magnetic Diffraction……………………………………………………….13
2-2 Instruments………………………………………………………15
2-2-1. X-ray diffraction…………………………….…………15
2-2-2. Neutron diffraction………………………………………17
2-2-3. Magnetic measurement (PPMS)……………………………19
2-2-4. Raman spectroscopy…………………………………………20
Reference………………………………………………………………21
Chapter 3 Characterization and Analysis…………………………………………….22
3-1 Synthesize Ho1-xLaxMn2O5 using the Sol-Gel Technique22
3-2 Structural Related Properties………………………….23
3-2-1 Crystalline Structure………………………………………….…………….23
3-2-2 Thermal Variations of Lattice Parameters…………………………………………………..28
3-2-3 Thermal Variations of Bond Valence and the global instability index………………………………………30
3-3 Macroscopic Magnetic Properties…………………………………………………….34
3-4 Results of Neutron Experiments…………………………………………………….41
3-4-1 Magnetic corrections………………………………………………………..41
3-4-2 Long ranger magnetic order…………………………………………………………………42
3-5 The Raman Spectroscopy………………………………………………………...45
3-6 Discussion and Conclusions………………………………………………………….49
Reference…………………………………………………………….51
Chapter 4 Effects of Pb-doping on the Multiferroic BiFeO3…………………………50
4-1 Introductions…………………………………………………………50
4-2 Fabrication of Bi1-xPbxFeO3…………………………………………………….53
4-3 Sample Characterization…………………………………………………..54
4-4 Macroscopic Magnetic Properties……………………………………………….56
4-5. Neutron Diffraction Results…………………………………………………….61
4-6 Discussions and Conclusions…………………………………………………….68
Reference…………………………………………………………….70
參考文獻 ch1
1. Schmid H, Ferroelectrics 162, 317 (1994).
2. Fiebig M, Lottermoser Th, D Fröhlich, A V Goltsev and R V Pisarev, Nature (London) 419, 818 (2002).
3. Hur N, Park S, Sharma P A, Guha S, and Cheong S-W, Phys. Rev. Lett. 93, 107207 (2004).
4. Makoto T, Keita A, Hitoshi K, and Tooru A, Phys. Rev. B 72, 224425 (2005)
5. Alonso J A, Casais M T, Martínez-Lope M J, Martínez J L and Fernández-Díazz M T, J. Phys.: Condens. Matter 9, 8515–8526 (1997).
6. Higshiyama D, and Miyasaka S, Phys Rev. B 72 064421 (2005)
7. Blake G R, Chapon L C, Radaelli P G, Park S, Hur N, Cheong S-W, and Rodríguez-Carvajal J, Phys. Rev. B 71, 214402 (2005).
8. Vecchini C, Chapon L C, Brown P J, Chatterji T, Park S, Cheong S-W and Radaelli P G, Phys. Rev. B 77 134434 (2008).
9. Muñoz A, Alonso J A, Casais M T, Martínez-Lope M J, Martínez J L and Fernández-Díaz M T, Phys. Rev. B 65 144423 (2002).
10. Kobayashi S, Osawa T, Kimura H, Noda Y, Kagomiya I and Kohn K, J. Phys. Soc. Jpn. 73 pp. 1031-1035 (2004).
11. Fukunaga M, Nishihata K, Kimura H, Noda Y, and Kohn K, J. Phys. Soc. Jpn. 76 074710 (2007).
12. Kobayashi S, Kimura H, Noda Y and Kohn K, J. Phys.Soc. Japan 74 468 (2005).
13. dela Cruz C R, Yen F, Lorenz B, Gospodinov M M, Chu C W, Ratcliff W, Lynn J W, Park S, and Cheong S –W, Phys. Rev. B 73, 100406(R) (2006).
14. Chapon L C, Blake G R, Gutmann M J, Park S, Hur N, Radaelli P G, and Cheong S-W Phys. Rev. Lett. 93, 177402 (2004).
15. Kobayashi S, Osawa T, Kimura H, Noda Y, Kagomiya I and Kohn K, J. Phys. Soc. Jpn. 73 pp. 1593-1596 (2004).
16. Ma C, Yan J-Q, Dennis K W, Llobet A, McCallum R W and Tan X, J. Phys.: Condens. Matter 21 346002 (2009)
17. Chen Y, Yuan H, Tian G, Zhang G, Feng S, J. Sol. Stat. Chem. 180 1340 (2007).
18. Golovenchits E and Sanina V, J. Phys.: Condens. Matter 16 4325–4334 (2007).
19. Fukunaga M, Nishihata K, Kimura H, Noda Y and Kohn K, J. Phys. Soc. Japan 77 094711 (2008).
20. Kimura H, Noda Y, and Kohn K., J.Magn.Magn.Mater. 321 854-857 (2009).
21. Radaelli P G and Chapon L C, J. Phys.: Condens. Matter 20 434213 (2008)
22. Radulova I, Lovchinova V, Daszkiewicz M, Journal of Magnetism and Magnetic Materials 320 43–46 (2008).
23. Muñoz A, Alonso J A, Casais M, Martínez-Lope M J, Martínez J L and Fernández-Díaz M T, Eur. J. Inorg. Chem. 685–691 (2005).
ch2
1. Rietveld H M, Acta Crystallogr. 22, 151-2. (1967)
2. Rietveld H M, J. Appl. Crystallography. 2, 65 (1969)
3. Young R A edited, The Rietveld Method (Oxford University Press, New York, (1993). (ISBN 0198555776)
4. Taylor J C, Rietveld made easy: a practical guide to the understanding of the method and successful phase quantifications, Canberra: Sietronics Pty Ltd (2001). (ISBN 0975079808)
5. http://www.ccp14.ac.uk/solution/rietveld_software/index.html
6. Toby B H, J. Appl. Cryst. 34, 210-213, (2001).
7. Larson A C and von Dreele R B, GSAS Manual, p167
8. Bacon G E, Neutron Diffraction (Oxford University Press, Oxford, 1975)
9. Lovessey S W, Theory of Neutron Scattering from Condensed Matter, Vol. 1&2 (Oxford University Press, New York, 1984)
10. Larson A C and von Dreele R B, GSAS Manual, p134.
11. http://www.ncnr.nist.gov/instruments/bt1/neutron.html.
12. Wilkinson C, J. Appl. Cryst. 24, 365-368 (1991)
ch 3
1. Radaelli P G and Chapon L C, J. Phys.: Condens. Matter 20, 434213(2008)
2. Alonso J A, Casais M T, Martinez-Lope M J and Rasines I, J. Solid State Chem. 129, 105 (1997).
3. Yu C C, Huang S Y, Yeh C J, Lee C W, Wu C B, and Chou H, J. App. Phys. 103, 07E310. (2008)
4. Larson A C and von Dreele R B, GSAS Manual, p160.
5. O’Keeffe M and Hyde B G, Acta Crystallogr., Sect. B. Crystallogr. Cryst. Chem. 33, 3802 (1977).
6. Brese N E and O’Keeffe M, Acta Cryst. B47, 192-197 (1991).
7. Alonso J A, Casais M T, Martínez-Lope M J, Martínez J L and Fernández-Díazz M T, J. Phys.: Condens. Matter 9, 8515–8526 (1997).
8. Brown I D, Z. Kristallogr. 199 255 (1992).
9. dela Cruz C R, Yen F, Lorenz B, Gospodinov M M, Chu C W, Ratcliff W, Lynn J W, Park S, and Cheong S-W, Phys. Rev. B 73, 100406(R) (2006).
10. Blake G R, Chapon L C, Radaelli P G, Park S, Hur N, Cheong S-W, and Rodríguez-Carvajal J, Phys. Rev. B 71, 214402 (2005).
11. Mihailova B, Gospodinov M M, Güttler B, Yen F, Litvinchuk A P, and Iliev M N, Phys. Rev. B 71, 172301 (2005).
12. Litvinchuk A P, Journal of Magnetism and Magnetic Materials 321 2373-2377 (2009).
ch 4
1. Michel C, Moreau J -M, Achenbach G D, Gerson R and James W J, Solid State Commun. 7 701 (1969).
2. Kubel F and Schmid H, Acta Crystallogr., Sect. B:Struct. Sci. 46 698 (1990).
3. Blaauw C and van der Woude F, J. Phys. C: Solid St. Phys. 6 1422-31 (1973).
4. Wollan E O and Koehler W C, Phys. Rev. 100 545-563 (1955).
5. Zhang S- T, Zhang Y, Lu M- H, Du C- L, Liu Z-G, Zhu Y- Y and Ming N- B, Appl. Phys. Lett. 88 162901 (2006).
6. Yuan G- L and Or S- W, Appl. Phys. Lett. 89 052905 (2006).
7. Khomchenko V A, Kiselev D A, Vieira J M, Kholkin A L, Sá M A and Pogorelov Y G, Appl. Phys. Lett. 90 242901 (2007).
8. Mazumder R and Sen A, Journal of Alloys and Compounds 475 577-580 (2009).
9. Chaigneau J, Haumont R, and Kiat J M, Phys. Rev. B 80 184107 (2009).
10. Khomchenko V A, Kiselev D A, Vieira J M, Rubinger R M, Sobolev N A, Kopcewicz M, Shvartsman V V, Borisov R , Kleemann W, and Kholkin A L, J. Phys.: Condens. Matter 20 155207 (2008).
11. Yu B. Li M, Liu J, Guo D, Pei L and Zhao X, J. Phys. D: Appl. Phys. 41 065003 (2008).
12. Jun Y- K and Hong S-H, Solid State Commun. 144 329-333 (2007).
13. Jacobson A J and Fender B E F, J. Phys. C: Solid State. Phys. 8 844 (1975).
14. Lebeugle D, Colson D, Forget A Viret M, Bonville P, Marucco J F, and Fusil S, Phys. Rev. B 76 024116 (2007).
15. Lu J, Gunther A, Schrettle F, Mayr F, Krohns S, Lunkenheimer P, Pimenov A, Travkin V D, Mukhin A A and Loidl A, arXiv:0910.0385v1 [cond-mat.mtrl-sci] (2009).
16. Ederer C and Spaldin N A, Phys Rev. B 71, 060401(R) (2005)
17. Lu J, Gunther A, Schrettle F, Mayr F, Krohns S, Lunkenheimer P, Pimenov A, Travkin V D, Mukhin A A and Loidl A, arXiv:0910.0385v1 [cond-mat.mtrl-sci] (2009).
18. https://www.ill.eu/sites/ccsl/ffacts/ffachtml.html
指導教授 李文献(Wien-Hsien Li) 審核日期 2010-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明