參考文獻 |
[1]民國96年癌症登記報告(2007)。中華民國行政院衛生署國民健康局。
[2] 林建甫(2008)存活分析。台北:雙葉書廊。
[3] Aalen, O. O. (1994). Effects of frailty in survival analysis. Stat. Methods Med. Res.,3, 227–2430.
[4] Abraham, T.K., James E. M., John A. F., Joseph, A. S., Richard, F. L, Randall, G. R. (1999). Report on the management of non-muscle-invasive bladder cancer (stages Ta, T1 and Tis), American Urological Association Inc.
[5] Aisbett, C. W. and McGilchrist, C. A. (1991). Regression with frailty in survival analysis. Biometrics, 47, 461–466.
[6] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study. Annals of Statistics, 10, 1100–1120.
[7] Andersen, R. K., Gill, R. D., Nielsen, G. G. and S rensen, T. I. A. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scandinavian Journal of Statistics, 19, 25–43.
[8] Badalament, R.A., Herr, H.W., Wong, G.Y., Gnecco, C., Pinsky, C.M., Whitmore Jr, W.F., Fair, W.R., Oettgen, H.F., (1987). A prospective randomized trial of maintenance versus nonmaintenance intravesical bacillus Calmette-Guerin therapy of superficial bladder cancer. Journal of Clinical Oncology, 5, 441-449.
[9] Boef, S. D. and Box-Steffensmeier, J. M. (2006). Repeated events survival models:The conditional frailty model. Statistics in Medicine, 25(20), 3518–3533.
[10] Cai, J., Cligg, L. X. and Sen, P. K. (1999). A marginal mixed baseline hazards model for multivariate failure time data. Biometrics, 55, 805-812.
[11] Chang, C.C., Cheng, H.L., Huang, K.H., Lin, S.H., Ling, Y.M., Tzai, T.S., Tong, Y.C., Yang, W.H. (1996). Postoperative Adjuvant Intravesical Instillation Therapy with BCG, Epirubicin and Thiotepa in Superficial Transitional Cell Carcinoma of Urinary Bladder. Journal of the Urological Association of R.O.C., 7, 187-192.
[12] Chen, J., Chiang, W.H., Chiu, T.Y., How, S.W., Hsieh, T.S., Hsu, T.C., Lin, F.S., Tsai, T.C. (1993). Clinico-patholigical study of bladder tumor. Journal of the Urological Association of R.O.C., 4, 1064-1070.
[13] Chiang, H.S., Guo, H.R. (1993). Geographical distribution of high-risk areas for bladder cancer in blackfoot disease endemic areas of Taiwan. Journal of the Urological Association of R.O.C.4, 1079-1085.
[14] Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of chronic disease incidence. Biometrika, 65,141–151.
[15] Cook, R. J. and Lawless, J. F. (2002). Analysis of repeated events. Statistical Methods in Medical Research, 11, 141–166.
[16] Cook, R. J. and Jerald, F. L. (2006). The statistical analysis of recurrent events.Springer.
[17] Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, B–34, 187–200.
[18] Fleming, T. R. and Harrington, D. P. (1991). Counting processes and survival analysis.Wiley, New York.
[19] Grambsch, P. M. and Therneau, T. M. (2000). Modeling survival data:extending the Cox Model . Springer.
[20] Guo, G. and Rodriguez, G. (1992). Estimating a multivariate proportional hazards model for clustered data using the EM algorithm with an application to child survival in guatemala. Journal of American Statistical Association, 87, 969–976.
[21] Haskell (2001). Cancer Treatment. Saunders.
[22] Hougarrd, P.(1986a). Survival models for heterogeneous populations derived from stable distributions. Biometrics, 73, 671-678.
[23] Hougaard, P. (1986b). A class of multivariate failure time distributions. Biometrics, 73, 387-396.
[24] Huber, P. J. (1967). The behaviour of maximum likelihood estimates under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 221–233.
[25] Kaplan, E. L. and Meier, P. (1958). Non-parameteric estimation from incomplete observtion. Journal of American Statistical Association, 53, 457–481.
[26] Klein, J.P. (1992). Semiparametirc estimation of random effects using the cox model based on the em algorithm. Biometrics, 48, 798–806.
[27] Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent events. Technometrics, 37, 158–168.
[28] Lin, D. Y. (1994). Cox regression analysis of multivariate failure time data: the marginal approach. Statistics in Medicine, 13, 2233–2247.
[29] Lin, D. Y., Wei, L. J. and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of American Statistical ssociation, 84, 1065–1073.
[30] Lin, D. Y. and Wei, L. J. (1989). The robust inference for the cox proportional hazard model. Journal of the American Statistical Association, 84, 1074–1078.
[31] Lin, D. Y., Wei, L. J., Yang, I., and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society, B–62, 711–730.
[32] Manton, K. G., Stallard, E. and Vaupel, J. W. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–454.
[33] Netto, R. R. Jr., Lemos, G.C. (1983). A comparison of treatment methods for the prophylaxis of recurrent superficial bladder tumors. Journal of the Urology, 129, 33-34.
[34] Oakes, D. (1992). Frailty models for multiple event times. Survival analysis: state of the art, pp. 371–379.
[35] Peterson, A. V., Prentice, P. L. and Williams, B. J. (1981). On the regression analysis of multivariate failure time data. Biometrika, 68, 373–379.
[36] Philip Hougaard. (2000). Analysis of multivariate survival data.Springer.
[37] Von der Maase H, Hansen, S. W., Dogliotti, L., Oliver, T., Moore, M. J. (2000). Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase Ⅲ study. Journal of clinical oncology, 18, 3068-3077.
|