博碩士論文 972204017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.117.76.7
姓名 陳念慈(Nien-tzu Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討酵母菌細胞質 glutamyl-tRNA synthetase 的粒腺體標的訊號
(Identification of the mitochondrial targeting signal of yeast glutamyl-tRNA synthetase)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌轉譯起始機制的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 酵母菌Saccharomyces cerevisiae中cytoplasmic glutamyl-tRNA synthetase (cGluRS) 是由細胞核基因GUS1解碼而來。在細胞質中cGluRS會將Glu接到相對應的tRNAGlu形成Glu-tRNAGlu,但是最近的研究報告指出cGluRS也會被送到粒腺體中參與Gln-tRNAGln的形成。在粒腺體中cGluRS首先會將Glu接到tRNAGln形成Glu-tNRAGln,再藉由Glu-tNRAGln amidotransferase的轉胺作用形成正確的Gln-tRNAGln。先前,我們實驗室指出,在細胞質中與cGluRS結合的分子Arc1p有粒腺體標的訊號,因此cGluRS有可能是藉由Arc1p而進入粒腺體的,經由點突變的實驗我們發現cGluRS和Arc1p各自攜帶粒腺體標的訊號,不需靠彼此交互作用而進入粒腺體。cGluRS的粒腺體標的訊號位於其胺基端1-29胺基酸。相反地,在酵母菌Schizosaccharomyces pombe及Candida albicans的cGluRS中並沒有發現類似的粒腺體標的訊號。而在Pichia guilliermodii、Candida albicans、Schizosaccharomyces pombe這三株酵母菌的Arc1p也沒有粒腺體標的訊號。
摘要(英) In Saccharomyces cerevisiae, the cytoplasmic glutamyl-tRNA synthetase (cGluRS) is encoded by GUS1. In cytoplasm, cGluRS attaches Glu to the cognate tRNAGlu to form Glu-tRNAGlu. In addition to the cytoplasmic activity, cGluRS can enter the mitochodria to synthesize Glu-tNRAGln (a misacylated product), which is then converted to correct Gln-tRNAGln by Glu-tNRAGln amidotransferase. A pervious study in our lab indicated that Arc1p, which binds cGluRS in cytoplasm, also has a mitochondrial targeting signal. Our results showed that cGluRS and Arc1p each carry a mitochondrial targeting signal and thus can enter the mitochondria by itself. Next, we used the cytoplasmic form of valyl-tRNA synthetase as the reporter gene to map the mitochondrial targeting signal of cGluRS. As it turned out, this signal was embedded in the N-terminal amino acids 1-29 of cGluRS. In contrast, no mitochondrial targeting signal was found in Schizosaccharomyces pombe or Candida albicans GluRS. Moreover, Arc1p from Pichia guilliermodii, Candida albicans, and Schizosaccharomyces pombe does not possess a mitochondrial targeting signal.
關鍵字(中) ★ 粒腺體標的訊號 關鍵字(英) ★ GluRS
★ MTS
論文目次 中文摘要i
英文摘要ii
誌 謝iii
目 錄iv
圖 目 錄vii
縮寫檢索表viii
第一章 緒論1
1.1 Aminoacyl-tRNA synthetases (aaRSs)的簡介1
1.2 原核與真核細胞在轉譯方式上的差異2
1.3 Glutaminyl-tRNA synthetase (GluRS)的簡介4
1.4 非專一性的tRNA 結合蛋白5
1.4.1 Arc1p 5
1.4.2 Ad(ScGluRS)5
1.5 粒腺體標的訊號的特性6
1.6 研究目的6
第二章 材料與方法8
2.1 菌株、載體及培養基8
2.2 大腸桿菌勝任細胞的製備與轉型作用 9
2.2.1 大腸桿菌勝任細胞的製備9
2.2.2 大腸桿菌勝任細胞的轉型作用 (transformation)10
2.3 酵母菌勝任細胞的製備與轉型作用10
2.3.1 酵母菌勝任細胞的製備10
2.3.2 酵母菌勝任細胞的轉型作用11
2.4 質體之建構 11
2.5 點突變 (Site-directed Mutagenesis)12
2.6 功能性互補試驗 (Complementation)―測試細胞質功能13
2.7 功能性互補試驗 (Complementation)―測試粒腺體功能14
2.8 蛋白質製備15
2.9 SDS-PAGE 之蛋白質分子量分析16
2.10 西方點墨法 (Western Blotting) 16
2.11酵母菌雙雜交系統 (Yeast Two-hybrid Assay)17
2.12 In Vitro Pull Down Assay 18
2.13酵母菌融合蛋白質的表現與純化18
第三章 結果 22
3.1 測定Arc1p的粒腺體標的訊號22
3.2利用點突變方法證實Arc1p及ScGluRS的胺基端粒腺體標的訊號之活性23
3.3 利用two-hybrid及pull-down的方法證實Arc1p及ScGluRS胺基端的交互作用24
3.4利用回報基因找出ScGluRS的粒腺體標的訊號25
3.5 鑑定不同物種的GluRS是否具有粒腺體標的訊號25
3.6 鑑定不同物種的Arc1p是否具有粒腺體標的訊號26
第四章 討論 28
4.1 ScGluRS 對於粒腺體功能必要性之探討28
4.2 ScGluRS的粒腺體標的訊號之預測30
第五章 參考文獻 32
參考文獻 Burbaum, J.J. and P.Schimmel. 1991. Structural relationships and the classification of aminoacyl-tRNA synthetases. J. Biol. Chem. 266: 16965-16968.
Cahuzac, B., E.Berthonneau, N.Birlirakis, E.Guittet, and M.Mirande. 2000. A recurrent RNA-binding domain is appended to eukaryotic aminoacyl-tRNA synthetases. EMBO J. 19: 445-452.
Carter, C.W., Jr. 1993. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62: 715-748.
Chatton, B., P.Walter, J.P.Ebel, F.Lacroute, and F.Fasiolo. 1988. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52-57.
Dietrich, A., J.H.Weil, and L.Marechal-Drouard. 1992. Nuclear-encoded transfer RNAs in plant mitochondria. Annu. Rev. Cell Biol. 8: 115-131.
Feng, L., D.Tumbula-Hansen, H.Toogood, and D.Soll. 2003. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Proc. Natl. Acad. Sci. U. S. A 100: 5676-5681.
Frechin, M., B.Senger, M.Braye, D.Kern, R.P.Martin, and H.D.Becker. 2009. Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev. 23: 1119-1130.
Gakh, O., P.Cavadini, and G.Isaya. 2002. Mitochondrial processing peptidases. Biochim. Biophys. Acta 1592: 63-77.
Galani, K., H.Grosshans, K.Deinert, E.C.Hurt, and G.Simos. 2001. The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J. 20: 6889-6898.
Golinelli-Cohen, M.P. and M.Mirande. 2007. Arc1p is required for cytoplasmic confinement of synthetases and tRNA. Mol. Cell Biochem. 300: 47-59.
Hughes, T.R., M.J.Marton, A.R.Jones, C.J.Roberts, R.Stoughton, C.D.Armour, H.A.Bennett, E.Coffey, H.Dai, Y.D.He, M.J.Kidd, A.M.King, M.R.Meyer, D.Slade, P.Y.Lum, S.B.Stepaniants, D.D.Shoemaker, D.Gachotte, K.Chakraburtty, J.Simon, M.Bard, and S.H.Friend. 2000. Functional discovery via a compendium of expression profiles. Cell 102: 109-126.
Karanasios, E., H.Simader, G.Panayotou, D.Suck, and G.Simos. 2007. Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly. J. Mol. Biol. 374: 1077-1090.
Martinis, S.A., P.Plateau, J.Cavarelli, and C.Florentz. 1999. Aminoacyl-tRNA synthetases: a new image for a classical family. Biochimie 81: 683-700.
Martinis, S.A. and P.Schimmel. 1993. Microhelix aminoacylation by a class I tRNA synthetase. Non-conserved base pairs required for specificity. J. Biol. Chem. 268: 6069-6072.
Mirande, M. 1991. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog. Nucleic Acid Res. Mol. Biol. 40: 95-142.
Mulero, J.J., J.K.Rosenthal, and T.D.Fox. 1994. PET112, a Saccharomyces cerevisiae nuclear gene required to maintain rho+ mitochondrial DNA. Curr. Genet. 25: 299-304.
Pelchat, M. and J.Lapointe. 1999. Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation. Biochem. Cell Biol. 77: 343-347.
Ribas de, P.L. and P.Schimmel. 2001. Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell 104: 191-193.
Simos, G., A.Sauer, F.Fasiolo, and E.C.Hurt. 1998. A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol. Cell 1: 235-242.
Whelihan, E.F. and P.Schimmel. 1997. Rescuing an essential enzyme-RNA complex with a non-essential appended domain. EMBO J. 16: 2968-2974.
Yano, M., K.Terada, and M.Mori. 2004. Mitochondrial import receptors Tom20 and Tom22 have chaperone-like activity. J. Biol. Chem. 279: 10808-10813.
葉曜榮 (2008)探討酵母菌Glutaminyl-tRNA synthetase對於粒腺體功能之影響。中央大學碩士論文 84頁
指導教授 王健家(Chien-chia Wang) 審核日期 2010-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明