博碩士論文 972204008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:18.188.78.125
姓名 林育琦(Yu-chi Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 Alcaligenes sp. SH542 對環境荷爾蒙辛基苯酚的生物降解
(Biodegradation of environmental octylphenol hormone by Alcaligenes sp. SH542)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 烷基苯酚 (Alkylphenol) 與烷基苯酚聚氧乙烯醇 (alkylphenol polyethoxylates, APEOn) 皆被用在塑膠、塗料、殺蟲劑及清潔劑的製造,並且烷基苯酚為APEOn在環境中代謝的產物,自然情況下不易分解,對環境生物造成威脅。壬基苯酚 (Nonylphenol, NP) 與辛基苯酚 (octylphenol, OP) 是烷基苯酚之中最常見的兩個商品。其中,辛基苯酚的雌激素活性是壬基苯酚的十至二十倍,本研究使用辛基苯酚為唯一生長碳源之菌株為模式,探討細菌在環境中生物分解所扮演的角色與機制。
先前本實驗室已由宜蘭縣員山鄉長期施灑農藥與肥料之稻田表土、所製作之土壤縮模 (microcosm) 及辛基苯酚藥罐中,共篩選出17株能以辛基苯酚為唯一生長碳源之菌株,以95種不同碳源組合圖譜 (BioLog方法)、脂肪酸甲酯圖譜分析方法及 16S rDNA序列比對作菌種鑑定。鑑定結果皆為革蘭氏陰性菌,分屬於α、β及γ-proteobacteria,其中 Pseudomonas 屬佔12株,其餘菌株包括 Alcaligenes sp., Shinella sp., Inquilinus sp.及 Methylobacterium radiotolerans。文獻中,具有降解烷基苯酚類化合物能力的菌株大多為 α-proteobacteria以及 γ-proteobacteria,本研究則選出在 β-proteobacteria中生長速率較佳,並可以利用辛基苯酚的類似碳源辛基苯酚聚氧乙烯醇 (octylphenol polyethoxylates)、辛基苯酚單氧乙烯醇 (octylphenol monoethoxylates)、辛基苯酚雙氧乙烯醇 (octylphenol diethoxylates)、酚 (phenol) 以及辛基鄰苯二酚 (octylcatechol) 作唯一碳源生長之菌株Alcaligenes sp. SH542,進行辛基苯酚轉化測定,以探討α、β及γ-proteobacteria對辛基苯酚之代謝途徑 。以辛基苯酚為Alcaligenes sp. SH542唯一生長碳源之模式,在不同時間長度的培養下,對菌液萃取濃縮,以高效能液相層析質譜儀分析辛基苯酚及相關代謝產物。可發現隨著培養時間增加,18天後,94.2%的辛基苯酚被去除。分析Alcaligenes sp. SH542的代謝產物,在細菌生長對數期時,1,2,4-trihydroxybenzene逐漸出現,並在生長對數遲滯期逐漸被分解,此時,另一代謝產物hydroquinone產生累積,然而在培養22天後,辛基苯酚與其代謝物 hydroquinone 與 1,2,4-trihydroxybenzene 皆被完全代謝。經由實驗室成員進行基因序列分析,Alcaligenes sp. SH542具有 multiple component phenol hydroxylase,以耗氧活性偵測儀可發現該菌株在加入辛基苯酚與其代謝產物 hydroquinone與 1,2,4-trihydroxybenzene時,皆有耗氧增加的情況,因此推測耗氧酵素參與在辛基苯酚的代謝過程。
經由代謝產物分析,我們推測 Alcaligenes sp. SH542 降解辛基苯酚途徑為,經由type II ipso substitution 後,產生 ipsohydroxylation中間物,中央斷裂而產生 hydroquinone,hydroquinone 再經加氧酵素轉化成 1,2,4-trihydroxybenzene。
摘要(英) Alkylphenols and alkylphenol polyethoxylates (APEOn) are used in the formulation and production of mainly plastics, paints, pesticides and detergents, and they are omnipresent in the environment. Nonylphenol and octylphenol are the primary members in the alkylphenol, and are also the major metabolites from APEOn. The prior studies have demonstrated that octylphenol is 10 to 20 folds higher in the estrogenic effect than nonylphenol. In this study, 4-t-octylphenol was used as the sole carbon source for the isolation of octylphenol-degrading bacteria in Taiwan. Seventeen octylphenol-degrading bacteria were isolated from paddy farm topsoil, soil microcosm and 4-t-octylphenol reagent bottle by previous works. The topsoil had been intermittently polluted by agricultural surfactants. These bacteria were identified by 16S rDNA gene sequencing, BioLog substrate profiling and fatty acid methyl ester fingerprinting. All the bacterial strains belong to α, β and γ-proteobacteria. In the past, most of the akylphenol degrading bacteria were found to belong to α and γ-proteobacteria. In this article, we propose the octylphenol degrading mechanism of the soil microcosm isolated Alcaligenes sp. SH542. which is belongs to β-proteobacteria. For the substrate utilization, strain SH542 can grow on MSB plate containing OPEOn, OPEO1, OPEO2, octylcatechol and phenol as sole carbon source.
For a time-course study of octylphenol degradation, 100% of octylphenol was removed after 22 days of incubation. In metabolite analysis, the data shows that the 1,2,4-trihydroxybenzene increase coincides with the obvious decrease of octylphenol in bacteria log phase at the first four days. After 12 days of incubation, the intermediate hydroquinone was found to accumulate and was further completely degraded after 22 days. For analysis of genes which related to degrade aromatic compounds, our lab member Tuan et al. (2010) shows that Alcaligenes sp. SH542 has multiple component phenol hydroxylase gene. We assumed that oxygen is involved in the degradation of octylphenol. Strain SH542 shows the oxygen was uptaked during octylphenol degradation, the oxygen also was uptaked in MSB medium with hydroquinone and 1,2,4-trihydroxybenzene as sole carbon sources.
In conclusion, octylphenol degradation by Alcaligenes sp. SH542 begins with the transformation of octylphenol to its ipsohydroxylated intermediate by type II ipso substitution. After central cleavage, hydroquinone was formed and further transferred to 1,2,4-trihydroxybenzene. No degradation products from 1,2,4-trihydroxybenzene were detected.
關鍵字(中) ★ 環境荷爾蒙
★ 生物降解
★ 辛基苯酚
關鍵字(英) ★ octylphenol
★ Biodegradation
★ environmental hormone
論文目次 中文摘要 I
Abstract III
Acknowledgement IV
Table of Contents V
List of Figures VII
List of Tables VIII
Abbreviations IX
1. Introduction 1
1.1 Ocytlphenol 1
1.1.1 Structure 1
1.1.2 Sources 1
1.1.3 Distribution 2
1.2 Behavior of octylphenol in environment 3
1.2.1 Physicochemical properties 4
1.2.2 Estrogenic activity 4
1.2.3 Hazardous 5
1.2.4 Human exposure 6
1.3 Biodegradation of octylphenol 7
1.3.1 Bacterial strains 8
1.3.2 Degradation mechanism 10
1.4 Research aims 13
1.5 Study Outline 15
2. Materials and Methods 16
2.1 Cultivation 16
2.1.1 Sample collection 16
2.1.2 Media 16
2.1.3 Incubation 17
2.2 Identification 17
2.2.1 Bacteria morphology 17
2.2.2 16S rRNA gene sequencing 18
2.2.3 Biolog breathprint 18
2.2.4 Fatty acid fingerprint 19
2.2.5 Phylogenetic analysis 19
2.3 Growth property 19
2.3.1 Substrate utilization 20
2.4 Biodegradative genes 20
2.5 Oxygen consumption activity 20
2.6 Identification of metabolites from the biodegradation of octylphenol 21
2.6.1 Extraction21
2.6.2 HPLC-MS determination 21
2.7 Quantification of metabolites 21
2.7.1 Calibration curve 21
2.7.3 Quantification 22
2.8 Chemicals and instruments 22
2.8.1 Chemicals 22
2.8.2 Instruments 23
3. Results 24
3.1 Identification 24
3.2 Morphology 25
3.3 Growth property of octylphenol -degrading bacteria 25
3.4 Substrate utilization of octylphenol -degrading bacteria 25
3.5 Biodegradative genes 26
3.6 Oxygen consumption 26
3.7 Growth Curve and Substrate Utilization of Alcaligenes sp. SH542 26
3.8 Degradation Rate of Octylphenol by Alcaligenes sp. SH542 27
3.9 Analysis of degradation metabolites formed by Alcaligenes sp. SH542 27
3.10 Biodegradation kinetics of octylphenol in Alcaligenes sp. SH542 28
4. Discussion 30
5. Conclusions 38
References 39
Figures 50
Tables 67
Appendix、 Solubility of O2 in buffered mitochondrial medium equilibrated with air 79
參考文獻 宋秉育(2004)辛基苯酚之分解、分解菌和生物復育之菌相研究。國立中央大學生命科學研究所碩士論文。
謝孝正 (2004) Pseudomonas putida TX2分解辛基苯酚聚氧乙烯醇及其雌激素活性代謝物之研究。國立中央大學生命科學研究所碩士論文。
陳美君 (2008) Pseudomonas putida TX2生長於辛/壬基苯酚之動力學及其鄰二苯酚加氧酵素之表現。國立中央大學生命科學研究所碩士論文。
Ademollo, N., Ferrara, F., Delise, M., Fabietti, F., Funari, E., 2008. Nonylphenol and octylphenol in human breast milk. Environ. Int., 34, 984-7.
Ana, R., Maria, F., Carlos, M., Maria, E., Paula, M., 2010. Microbial degradation of 17β -estradiol and 17α-ethinylestradiol followed by a validated HPLC-DAD method. J. Environ. Sci. and Health, 45, 265 – 73.
Anquandah, G., Sharma, V., 2009. Oxidation of octylphenol by ferrate(VI). J. Environ. Sci. Health A. Tox. Hazard. Subst. Environ. Eng., 44, 62-6.
Ahel, M. and Giger, W. 1993. Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere, 26, 1471-8.
Ashfield, L., Pottinger, T., Sumpter, J., 1998. Exposure of female juvenile rainbow trout to alkylphenolic compounds results in modification to growth and
ovosomatic index. Environ. Technol., 17, 679-86.
Barberio, C., Pagliai, L., Cavalieri, D., Fani, R., 2001. Biodiversity and horizontal gene transfer in culturable bacteria isolated from activated sludge enriched in nonylphenol ethoxylates. ResMicrobiol, 152, 105–112.
Bennie D., 1999. Review of the environmental occurrence of alkylphenols and alkylphenol ethoxylates. Water Qual. Res. J. Canada., 34, 79–122.
Bicknell, R., Herbison, A., Sumpter, J., 1995. Oestrogenic activity of an environmentally persistent alkylphenol in the reproductive tract but not the brain of rodents. J. Steroid Biochem. Mol. Biol., 54, 7-9.
Boockfor, F. and Blake, C., 1997. Chronic administration of 4-tert-octylphenol to adult male rats causes shrinkage of the testes and male accessory sex organs, disrupts spermatogenesis, and increases the incidence of sperm deformities. Biol. Reprod., 57, 267–77.
Brand, N., Mailho, G., Bolte, M., 1998. Degradation Photoinduced by Fe(III): Method of Alkylphenol Ethoxylates Removal in Water. Environ. Sci. Technol., 32, 2715-20
Castillo, M., Riu, J.,Ventura, F., Boleda, R., Scheding, R., Schröder, H., 2000. Inter-laboratory comparison of liquid chromatographic techniques and enzyme-linked immunosorbent assay for the determination of surfactants in wastewaters. J. Chromatogr. A., 889, 195–209.
Chang, B., Chiang, F., Yuan, S.,2005. Biodegradation of nonylphenol in sewage sludge. Chemosphere, 60, 1652-9.
Chen, H.J., Huang, S.L., Tseng, D.H., 2004. Aerobic biotransformation of octylphenol polyethoxylate surfactant in soil microcosms. Environ. Technol., 25, 201-10.
Comber, M., Williams, T., Stewart, K., 1993. The effect of nonylphenol on Daphnia magna. Wat. Res., 27, 273-76.
Corti, A., Frassinetti, S., Vallini, G., Antone, S., Fichi, C., Solaro, R., 1995. Biodegradation of nonionic surfactants. I. biotransformation of 4-(1-nonyl)phenol by a Candida maltosa isolate. Environ. Pollut., 90, 83–7
Corvini, P., Meesters, R., Schäffer, A., Schröder, H., Vinken, R., Hollender, J., 2004. Degradation of a nonylphenol single isomer by Sphingomonas sp. strain
TTNP3 leads to a hydroxylation-induced migration product. Appl. Environ. Microbiol., 70, 6897-900.
Daubaras, D., Saido, K., Chakrabarty, A., 1996. Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Appl. Environ. Microbiol., 62, 4276-9.
Ding, W. H., S. H. Tzing, and J. H. Lo., 1999. Occurrence and concentrations of aromatic surfactants and their degradation products in river waters of Taiwan. Chemosphere. 38, 2597-2606.
Dorota, B., Dorota, G., Magdalena, O., Jerzy, L., Gębicki, S., Jacek S., 2010. Degradation of n-butylparaben and 4-tert-octylphenol in H2O2/UV system. Radiat. Phys. and Chemistry, 79, 409-16.
Ekelund, R., Granmo, K., Magnusson, M., Bergman, A., 1993. Biodegradation of 4-nonylphenol in seawater and sediment. Environ. Pollut., 79, 59-61.
Eppink, M., Cammaart, E., Van Wassenaar, D., Middelhoven, W., van Berkel, W., 2000. Purification and properties of hydroquinone hydroxylase, a FAD-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604. Eur. J. Biochem., 267, 6832-40.
Ferraroni, M., Seifert, J., Travkin, V., Thiel, M., Kaschabek, S., Scozzafava, A., Golovleva, L., Schlömann, M., Briganti, F., 2005. Crystal structure of the hydroxyquinol 1,2-dioxygenase from Nocardioides simplex 3E, a key enzyme involved in polychlorinated aromatics biodegradation. J. Biol. Chem., 280, 21144-54.
Fujii, K., Urano, N., Ushio, H., Satomi, M., Kimura, S., 2001. Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a
sewage-treatment plant in Tokyo. Int J Syst. Evol. Microbiol., 51, 603–10.
Gabriel, F., Heidlberger, A., Rentsch, D., Giger, W., Guenther, K., Kohler, H., 2005. A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram: ipso-hydroxylation and intramolecular rearrangement. J. Biol. Chem., 280, 15526-33.
Gai, Z., Yu, B., Li, L., Wang, Y., Ma, C., Feng, J., Deng, Z., Xu, P., 2007. Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl. Environ. Microbiol., 73, 2832-8.
Glassmeyer, S., Furlong, E., Kolpin, D., Cahill, J., Zaugg, S.,Werner, S., 2005. Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environ. Sci. Technol., 39, 5157–69.
Gimeno, S., Komen, H., Venderbosch, P., Bowmer, T., 1997. Disruption of sexual differentiation in genetic male common carp (Cyprinus carpio) exposed to an alkylphenol during different life stages. Environ. Sci. Technol., 31, 2884-90.
Habash, M., Beaudette, L., Cassidy, M., Leung, K., Hoang, T., Vogel, H., Trevors, J., Lee, H., 2002. Characterization of tetrachlorohydroquinone reductive dehalogenase from Sphingomonas sp. UG30. Biochem. Biophys. Res. Commun., 299,634–640
Harris, C., Santos, E., Janbakhsh, A., Pottinger, T., Tyler, C., Sumpter, J., 2001. Nonylphenol affects gonadotropin levels in the pituitary gland and plasmaof female rainbowtrout. Environ. Sci. Technol., 35, 2909–16.
Isobe, T., Nishiyama, H., Nakashima, A., Takada, H., 2001. Distribution and behavior of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary
distributions. Environ. Sci. Technol., 35, 1041–49.
Jain, R., Dreibach, J., Spain, J., 1994. Biodegradation of pnitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl. Environ. Microbiol., 60, 3030–2.
Jeong, J.J., Kim, J.H., Kim, C.K., Hwang, I., Lee, K., 2003. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology, 149, 3265-77.
Jobling, S. and Sumpter, P., 1993. Detergent components in sewage effluent are weakly oestrogenic to fish: An in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic. Toxicology., 27, 361–72
Jobling, S., Sheahan, D., Osborne, J., Matthiessen, P., Sumpter, J., 1996. Inhibition of Testicular Growth in Rainbow-Trout (Oncorhynchus- Mykiss) Exposed to Estrogenic Alkylphenolic Chemicals. Environ. Toxicol. Chem., 15, 194-202.
John, D. and White, G., 1998. Mechanism for biotransformation of nonylphenol polyethoxylates to Xenoestrogens in Pseudomonas putida. J. Bacteriol., 180, 4332-8.
Johnson, A., White, C., Bhardwaj, L., Jurgens, M., 2000. Potential for octylphenol to biodegrade in some English rivers. Environ. Toxicol. Chem., 19, 2486-92.
Kojima, S. and Watanabe, M., 1998. Distribution of alkylphenol polyethoxylate (APE) and their metabolites in the aquatic environmet in Nagoya City. Jpn. J. Wat. Pollut. Res, 21, 302-9.
Kuch, H. and Ballschmitter, K., 2001. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ. Sci. Technol., 35, 3201-6.
Lee, P. and Lee, W., 1996. In vivo estrogenic action of nonylphenol in immature female rats. Bull. Environ. Contam. Toxicol., 57, 341–8.
Leys, N., Ryngaert, A., Bastiaens, L., Verstraete, W., Top, E., Springael, D., 2004. Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol., 70, 1944-55.
Liber, K., Gangl, J., Corry, T., Heinis, L., Stay, F., 1999. Lethality and bioaccumulation of 4-nonylphenol in bluegill sunfish in littoral enclosures. Environ. Toxicol. Chem., 18, 394-400.
Lin, Y.W., Guo, G.L., Hsieh, H.C., Huang, S.L., 2010. Growth of Pseudomonas sp. TX1 on a wide range of octylphenol polyethoxylate concentrations and the formation of dicarboxylated metabolites. Bioresour. Technol., 101, 2853-9.
Liu, Y., Wang, F., Xia, S., Zhao, J., 2008. Study of 4-t-octylphenol degradation and microbial community in granular sludge. J. Environ. Sci. (China), 20, 167-71.
Lu, Y.Y., Chen, M.L., Sung, F.C., Mao, I.F., 2007. Daily intake of 4-nonylphenol in Taiwanese, Environ. Int., 33, 903–10.
Lye, C., Frid, C., Gill, M., Cooper, D., Jones, D., 1999. Estrogenic alkylphenols in fish tissues, sediments, and waters from the U.K. Tyne and Tees estuaries. Environ. Sci. Technol., 33, 1009–14.
Macnaughton, S., Stephen, J.., Venosa, A., Davis, G., Chang, Y., White, D., 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol., 65, 3566–74.
Maguire, R., 1999. Review of the persistence of nonylphenol and nonylphenol ethoxylates in aquatic environments. Water Qual. Res. J. Canada, 3437-78.
McCarthy, D., Claude, A., Copley, S., 1997. In vivo levels of chlorinated hydroquinones in a pentachlorophenoldegrading bacterium. Appl. Environ. Microbiol., 63, 1883-8.
McLeese, D., Zitko, V., Sergeant, D., Burridge, L., Metcalfe, C., 1981. Lethality and accumulation of alkylphenols in aquatic fauna. Chemosphere, 10, 723-30.
Miyauchi, K., Adachi, Y., Nagata, Y., Takagi, M., 1999. Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of γ-hexachlorocyclohexane in Sphingomonas paucimobilis. J. Bacteriol., 181, 6712–9
Montgomery-Brown, J. and Reinhard, M., 2003. Occurrence and behavior of alkylphenol polyethoxylates in the environment. Environ. Eng. Sci., 20, 471-486.
Naylor, C., Mieure, J., Adams, W., Weeks, J., Castaldi, F., Ogle, L., Romano, R., 1992. Alkylphenol ethoxylates in the environment. J. Am. Oil Chem. Soc., 69, 695–703.
Nguyen, M.H., Sigoillot, J.C., 1997. Isolation from coastal sea water and characterization of bacterial strains involved in non-ionic surfactant degradation. Biodegradation, 7, 369-375.
Nielsen, E., G. Ostergaard, I. Thorup, O. Ladefoged, and J. E. Jelnes. 2000. Toxicological evaluation and limit values for nonylphenol, nonylphenol ethoxylates, tricresyl, phosphates and benzoic acid. Danish Environmental Project, 512. Miljoprojekt.
Nimrod, A. and Benson, W., 1996. Environmental estrogenic effects of alkylphenol ethoxylates. Crit. Rev. Toxicol., 26, 335-64.
Osburn, Q. and Benedict, J., 1996. Polyethoxylate alkylphenol: relationship of structure to biodegradation mechanism. J. Am. Oil Chem. Soc., 43, 143–46.
Porter, A. and Hay, A., 2007. Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol. Appl. Environ. Microbiol., 73, 7373-9.
Routledge, E., Sheahan, D., Desbrow, C., Brighty, G., Waldock, M., Sumpter, J., 1998. Identification of estrogenic chemicals in STW effluent. 2. in vivo responses in trout and roach. Environ. Sci. Technol., 32, 1559–1565
Sariaslani, F,, Harper, D., Higgins, I., 1974. Microbial biodegradation of hydrocarbons: Catabolism of 1-phenyl alkanes by Nocardia salmonicolor. Biochemn. J., 140, 31-45
Sato, H., Shibata, A., Wang, Y., Yoshikawa, H., Tamura, H., 2003. Characterization of biodegradation intermediates of nonionic surfactants by MALDI-MS. 2. Oxidative biodegradation profiles of uniform octylphenol polyethoxylate in 18O-labeled water. Biomacromolecules, 4, 46-51.
Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N &Olea Serrano F (1995) The E-screen assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ. Health Perspect., 103, 113–122
Schuler, L., Ní Chadhain, S., Jouanneau, Y., Meyer, C., Zylstra, G., Hols, P., Agathos, S., 2008, Characterization of a novel angular dioxygenase from fluorene-degrading Sphingomonas sp. strain LB126. Appl. Environ. Microbiol., 74, 1050-7.
Servos, M., 1999. Review of the aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenols and alkylphenol polyethoxylates. Water Qual. Res. J. Can, 34, 123-177.
Sharpe, R. and Skakkebæk, N., 1993. Are Oestrogens Involved in Falling Sperm Counts and Disorders of the Male Reproductive Tract? The Lancet, 341, 1392-5.
Sheahan, D. and Harries, J., 1992. Effects of trace organics on fish, a joint study between the Directorate of Fisheries Research of the Ministry of Agriculture, Fisheries and Food. Brunel University, The Water Research Centre.
Shibata, A. and Katayama, A., 2007. Anaerobic co-metabolic oxidation of 4-alkylphenols with medium-length or long alkyl chains by Thauera sp., strain R5. Appl. Microbiol. Biotechnol., 75, 1151-61.
Smith, M., 1990. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation, 1, 191-206.
Soares, A., Guieysse, B., Delgado, O., Mattiasson, B., 2003. Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol. Lett., 25, 731–8.
Staples, C., Klecka, G., Naylor, C., Losey, B., 2008. C8- and C9-alkylphenols
and ethoxylates: I. Identity, physical characterization, and biodegradation pathways analysis. Hum. Ecol. Risk Assess, 14, 1007–24.
Isobe, T., Satoh, M., Ogura, N., Takada, H., 1999. Determination of nonylphenol by GC-MS in environmental samples in Tokyo. Jpn. J. Wat. Pollut. Res, 22, 118-26.
Ribeiro, A., Carvalho, M., Afonso, C., Tiritan, M., Castro, P., 2010. Microbial degradation of 17beta -estradiol and 17alpha -ethinylestradiol followed by a validated HPLC-DAD method. J. Environ. Sci. Health B, 45, 265-73.
Rieble, S., Joshi, D., Gold, M., 1994. Purification and characterization of a 1,2,4-trihydroxybenzene 1,2-dioxygenase from the basidiomycete Phanerochaete chrysosporium. J. Bacteriol., 176, 4838-44.
Routledge, E. and Sumpter, J., 1997. Structural features of alkylphenolic chemicals associated with estrogenic activity. J. Biol. Chem., 272, 3280-8.
Tabira, Y., Nakai, M., Asai, D., Yakabe, Y., Tahara, Y., Shinmyozu, T., Noguchi, M., Takatsuki, M., Shimohigashi, Y., 1999. Structural requirements of para-alkylphenols to bind to estrogen receptor. Eur. J. Biochem., 262, 240-5.
Takeo, M., Prabu, S., Kitamura, C., Hirai, M., Takahashi, H., Kato, D., Negoro, S., 2006. Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain. J. Biosci. Bioeng., 102, 352-61.
Tanghe, T., Dhooge, W., Verstraete, W., 2000. Formation of the metabolic intermediate 2,4,4-trimethyl-2-pentanol during incubation of a Sphingomonas sp. strain with the xeno-estrogenic octylphenol. Biodegradation, 11, 11-9.
Tanghe, T., Dhooge, W., Verstraete, W., 1999. Isolation of a bacterial strain able to degrade branched nonylphenol. Appl. Environ. Microbiol. 65, 746–51.
Tanenbaum, D. M, Wang, Y., Williams, S. P., and Sigler, P. B., 1998. Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc. Natl. Acad. Sci. U.S.A, 95, 5998-6003.
Thiele, B., Gunther, K., Schwuger, M., 1997. Alkylphenol Ethoxylates: Trace Analysis and Environmental Behavior. Chem. Rev., 97, 3247-72.
Toppari, J., Larsen, J., Christiansen, P.,1996. Male reproductive health and environmental xenoestrogens. Environ. Health Perspect, 104, 741–803. Ushiba, Y., Takahara, Y., Ohta, H., 2003. Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int. J. Syst. Evol. Microbiol., 53, 2045-8. Van Hamme, J., Odumeru, J., Ward, O., 2000. Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture. Can. J. Microbiol., 46, 441-50.
White, G., 1993. Bacterial Biodegradation of Ethoxylated Surfactants. Pesticide Science, 37, 159-66.
White, R., Jobling, S., Hoare, S., Sumpter, J., Parker, M., 1994. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology, 135, 175-82.
Xiao, Y., Zhang, J., Liu, H., Zhou, N., 2007. Molecular characterization of a novel ortho-nitrophenol catabolic gene cluster in Alcaligenes sp. strain NyZ215. J. Bacteriol., 189, 6587–93.
Yim, B., Yoo, Y., Maeda, Y., 2003. Sonolysis of alkylphenols in aqueous solution with Fe(II) and Fe(III). Chemosphere, 50, 1015-23.
Yuan, S., Yu, C., Chang, B., 2004. Biodegradation of nonylphenol in river sediment. Environ Pollut, 127, 425-30.
Zeng, H., Jiang, H., Xia, K., Wang, Y., Huang Y., 2010. Characterization of phenol degradation by high-efficiency binary mixed culture. Environ. Sci. Pollut. Res. Int., 17, 1035-44.
指導教授 黃雪莉(Shir-ly Huang) 審核日期 2010-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明