博碩士論文 946401001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.220.148.123
姓名 張偉裕(Wei-Yu Chang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 利用雙偏極化雷達及二維雨滴譜儀分析颱風降水系統特性
(Characterization of Typhoon Rain Events UsingPolarimetric Radar and 2D-Video Disdrometer measurements)
相關論文
★ 賀伯颱風與地形間的交互作用★ SCSMEX期間利用C-Pol偏極化雷達氣象參數觀測降水系統之分析
★ 利用與滴譜儀分析雨滴粒徑分布:納莉颱風個案★ 利用都卜勒雷達分析颱風風場結構 - 2001年納莉颱風
★ 宜蘭地區豪雨個案之研究★ 利用二維雨滴譜儀研究雨滴譜特性
★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構★ 利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究
★ 納莉颱風登陸時的結構演化★ 雙偏極化雷達資料分析梅雨鋒面雨滴粒徑分佈的物理特性
★ 台灣北部初秋豪雨個案之降雨特性研究★ 雨滴粒徑分布模擬─雙偏極化雷達驗證
★ 梅雨降水系統的雙偏極化雷達資料分析與WRF模式模擬研究★ 2007年梅雨季期間之颮線個案分析
★ MM5模式模擬之納莉颱風(2001)登陸時風場結構變化★ SoWMEX/TiMREX個案中雨滴粒徑分佈之收支分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用二維雨滴譜儀(2D-Video Disdrometer)地面觀測及C 波段雙偏極化雷達(C-band dual-polarimetric radar)的反演資料,分析登陸北台灣地區之颱風的雨滴粒徑分佈(Rainrop Size Distribution)及其雨滴軸比關係(Drop Shape Relation)。由兩個颱風雨帶之雨滴粒徑分佈的時間演變,及其對應之降水系統的垂直結構分析,發現颱風雨帶內有三種不同的降水型態:(1) 弱層狀水、(2)層狀降水、(3)對流降水。此三種不同型態的降水系統,其質量權重雨滴直徑(mass-weighted diameter - Dm)、最大雨滴直徑(maximum diameter)及回波垂直結構等,均有不同的特徵。從雷達回波15 dBZ
等值線的距海平面高度高度(代表系統發展高度H)及雷達地面回波值(代表系統強度ZHH)的分析發現,質量權重雨滴直徑(mass-weighted diameter - Dm)隨H 及ZHH 值的增加而有增大的趨勢。從海面上雷達雨滴粒徑分佈反演發現,颱風降水系統的雨滴粒徑分佈可被歸類為海洋型對流降水系統(maritime convective type)。然而,地面雨滴譜儀觀測資料顯示,登陸後的颱風降水系統之雨滴粒徑分佈,其特徵介於海洋及大陸型對流降水系統(continental convective type)之間。在雨滴軸比關係(Drop Shape Relation)研究中發現,颱風系統內大於1.5mm 的雨滴,其「有效」雨滴軸比關係(effective DSR)隨著環境水平風速的增加,而傾向於較接近圓形(較不橢圓)。
本研究並利用觀測模擬實驗(Observing System Simulation Experiment: OSSE)在理想的環境下, 對兩種回波衰減修正(attenuation correction) 方法: 變分法(variational-based)及差異相位差法(ΦDP-based)進行詳細的評估。分析結果顯示,變分法(variational-based)能提供較為準確的回波衰減修。另外,研究利用變分法修正X 波段偏極化雷達受回波衰減影響的實驗(SoWMEX/TiMREX)資料,與同步觀測的NCARS-波段偏極化雷達(NCAR SPOL)觀測值,以及雨滴譜儀觀測之散射模擬比較,其結果均顯示變分法(variational-based) 能提供正確的衰減修正。然而, 差異反射率(ZDR:differential reflectivity)、差異相位差(ΦDP:differential phase shift)的觀測值,在降水系統強梯度區的觀測偏差,將會限制變分法(variational-based)的應用。
摘要(英) The drop size distribution (DSD) and drop shape relation (DSR) characteristics observed by a ground based 2D-Video disdrometer and retrieved from the C-band polarimetric radar in the typhoon systems during landfall and on the ocean near the northern Taiwan in the Western
Pacific regions were analyzed. The DSDs evolution and its relation with the vertical development of the reflectivity of two rain band cases were investigated. Three different types of precipitation system were studied: 1) weak stratiform type 2) stratiform type and 3) convective type according to characteristics of the mass-weighted diameter (Dm), the maximum diameter and the vertical structure of reflectivity. Further study of the relationship between the 15 dBZ contour height (H) of the vertical reflectivity profile, surface reflectivity (ZHH) and the mass-weighted diameter (Dm) showed that Dm increased with corresponding
increase in the system depth (H) and reflectivity (ZHH). The analysis of DSDs retrieved from NCU C-band polarimetric radar measurements and disdrometer in typhoon concluded that the DSDs from the typhoon systems on the ocean were mainly maritime convective type. However, the DSDs collected over land tended to uniquely locate in between of the continental and maritime clusters. The ”effective DSR” of typhoon systems tends to be more spherical with drops greater than 1.5 mm when higher horizontal winds (maximum wind speed was less than 8 m sec-1).
A detailed observing system simulation experiment (OSSE) was used for evaluating performance of the variational-based attenuation correction method and the ΦDP-based method. The variational-based method always estimates more accurate attenuation than the ΦDP-based method. The accuracy of attenuation-corrected X-band measurements in actual field measurements was evaluated by comparing the measurements with collocated NCAR S-band radar measurements. It was shown that the variational-based method is less sensitive
to measurement noise in radar observations. Attenuation-corrected X-band radar measurements are also compared with disdrometer-based simulated ZHH and ZDR observations.
There were instances, where large artifacts in ZDR (differential reflectivity) and ΦDP (differential phase shift) due to steep gradients in storm intensity, limited the usefulness of the variational-based method.
關鍵字(中) ★ 颱風
★ 偏極化雷達
★ 雨滴粒徑分布
關鍵字(英) ★ raindrop size distribution
★ polarimetric radar
★ typhoon
論文目次 Chinese Abstract I
English Abstract II
Acknowledgements III
Table of Contents IV
Chapter 1. Introduction 1
1.1 Motivation 2
1.2 Outline 4
Chapter 2. Dual-Polarimetric radar measurements 5
2.1 National Central University C-Band Polarimetric radar (NCU CPOL) 5
2.1.1 Reflectivity factor (Z) 5
2.1.2 Differential reflectivity (ZDR) 6
2.1.3 Differential phase shift (ΦDP) 8
2.1.4 Specific differential phase shift (KDP) 9
2.1.5 Correlation coefficient (ρHV) 9
2.1.6 System bias 10
2.1.7 Attenuation effect 11
2.2 An example of the polarimetric measurements from X-band radar 12
Chapter 3. Raindrop Size distribution in typhoon 13
3.1 Gamma distribution of the DSD 14
3.2 Normalized-Gamma distribution of the DSD 17
3.3 2D-Video disdrometer 17
3.4 The characteristics of DSDs in typhoon systems 18
3.4.1 Statistical analysis of typhoon cases 19
3.4.2 Typhoon Nari 20
3.4.3 Typhoon Haima 22
3.4.4 Relationship between DSDs and the depth of the convective systems 24
3.4.5 DSD characteristics of typhoon Nari and Haima 25
3.4.6 Z-R relationship for various precipitation system in typhoon 27
3.5 The summary of raindrop size distribution in typhoon 28
Chapter 4. Drop shape relation and Raindrop Size distribution 30
retrieval in typhoon
4.1 Constrained-Gamma raindrop size distribution retrieval algorithm 31
4.2 Axis-ratio of raindrops 33
4.2.1 Axis-ratio measurement uncertainty from 2D-Video disdrometer 33
4.2.2 DSR from typhoon systems 34
4.2.3 DSR characteristics as a function of rainfall rates and wind speeds 36
4.2.4 The DSR estimated from NCU C-Band Polarimetric radar 38
4.3 μ-Λ relationship 39
4.4 Raindrop size distribution retrieval from Typhoon Saomai 2006 40
4.5 Summary of the characteristics of DSR and DSR in typhoon systems 43
Chapter 5. Variational-based attenuation correction algorithm 45
5.1 Review of the attenuation correction 46
5.2 Methodology – Variational Method 48
5.3 The Observing System Simulation Experiments 52
5.3.1 The OSSE without observation error 53
5.3.2 The OSSE with observation error 54
5.4 Applications of the Attenuation Correction Scheme to Field Measurements 56
5.4.1 Analysis of an RHI scan 57
5.4.2 Analysis of a single radar beam 58
5.4.3 Density scatter plot between ZHH and ZDR 60
5.4.4 Comparison with the disdrometer 61
5.4.5 KDP-AH and KDP-ADP relations 63
5.5 Summary of the variational-based attenuation correction algorithm 64
Chapter 6. Summary and Future work 65
6.1 Summary 65
6.2 Future work 69
Reference 73
List of Tables 80
List of Figures 81
Tables 87
Figures
參考文獻 Anagnostou, E.N., M.N. Anagnostou, W.F. Krajewski, A. Kruger, and B.J. Miriovsky,2004: High-Resolution Rainfall Estimation from X-Band Polarimetric RadarMeasurements. J. Hydrometeor., 5, 110–128.
Anagnostou, M. N., E. N. Anagnostou, J. Vivekanandan, 2006: Correction for RainPath Specific and Differential Attenuation of X-Band Dual-Polarization Observations, IEEE Trans. Geosci. Rem. Sens., 44, 2470- 2480.
Andsager, K., K. V. Beard, and N. F. Laird, 1999: Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56, 2673–2683.
Balakrishnan, N. and D.S. Zrnic, 1990: Use of Polarization to Characterize Precipitation and Discriminate Large Hail. J Atmos Sci, vol. 47, 1525–1540.
Barber, P. and C. Yeh, 1975: Scattering of Electromagnetic Waves by Arbitrarily Shaped Dielectric Bodies. Appl. Opt.: Vol. 14, pp. 2864–2872.
Battan,L.J., Radar observations of the atmosphere, pp324, University of Chicago Press, Chicago, III, 1973.
Beard, K. V., and C. Chuang, 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 1509–1524.
Brandes, E.A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor.
41, 674-685.
Brandes, E.A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution based polarimetric radar rainfall estimator. J. Appl. Meteor. 42, 652 - 660.
Brandes, E.A., G. Zhang, and J. Vivekanandan, 2004a: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461_475.
Brandes, E.A., G. Zhang, and J. Vivekanandan, 2004b: Comparison of Polarimetric Radar Drop Size Distribution Retrieval Algorithms. J. Atmos. Oceanic Technol., 21,
584–598.
Brandes, E.A., G. Zhang, and J. Sun, 2006: On the Influence of Assumed Drop Size Distribution Form on Radar-Retrieved Thunderstorm Microphysics. J. Appl. Meteor. Climatol., 45, 259–268.
Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. Zrnić, 1990: An Examination of Propagation Effects in Rainfall on Radar Measurements at Microwave Frequencies. J. Atmos. Oceanic Technol., 7, 829–840.
Bringi, V.N., V. Chandrasekar, 2001a: Polarimetric Doppler Weather Radar: Principles and Applications, Cambridge University Press, 636 pp.
Bringi, V.N., T. D. Keenan, and V. Chandrasekar, 2001b: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent
method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 1906–1915.
Bringi, V.N., G.J. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A Methodology for Estimating the Parameters of a Gamma Raindrop Size Distribution Model from Polarimetric Radar Data: Application to a Squall-Line Event from the
TRMM/Brazil Campaign. J. Atmos. Oceanic Technol., 19, 633–645.
Bringi, V.N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. Randeu, and M. Scoenhuber, 2003a: Raindrop size distribution in different climate regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354 – 365.
Bringi, V.N., V. Chandrasekar, D. Zrnic, and C.W. Ulbrich, 2003b: Comments on “The need to represent raindrop size spectra as normalized gamma distribution for interpretation of polarimetric radar observation”. J. Appl. Meteor., 42, 1184-1189.
Bringi, V.N., T. Tang, and V. Chandrasekar, 2004: Evaluation of a New Polarimetrically Based Z–R Relation. J. Atmos. Oceanic Technol., 21, 612–623.
Chandrasekar V., V. N. Bringi, N. Balakrishnan, and D. S. Zrnic′, 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7, 621–629.
Chandrasekar, V., S. Lim, and E. Gorgucci, 2006: Simulation of X-Band Rainfall Observations from S-Band Radar Data. J. Atmos. Oceanic Technol., 23, 1195–1205.
Chang, W.Y., T.C.C. Wang, and P.L. Lin, 2009a: Characteristics of the Raindrop Size Distribution and Drop Shape Relation in Typhoon Systems in the Western Pacific
from the 2D Video Disdrometer and NCU C-Band Polarimetric Radar. J. Atmos. Oceanic Technol., 26, 1973–1993.
Chang, W.Y., J. Vivekanandan, T.C.C. Wang, and P.L. Lin, 2009b: Estimation of Attenuation at X-band Using Propagation Phase and Differential Reflectivity. J.
Atmos. Oceanic Technol. (submitted)
Doelling, I. G., J. Joss, and J. Riedl, 1998: Sysstematic variations of Z-R relationships from drop size distributions measured in northern Germany during seven years. Atmos. Res., 47-48, 635-649.
Furness, G., 2005: Using optimal estimation theory for improved rainfall rates from polarization radar. Masters dissertation, Dept. of Mathematics, University of Reading, pp. 66.
Gorgucci, E., G. Scarchilli, V. Chandrasekar, 1994: A robust estimator of rainfall rate using differential reflectivity. J. Atmos. Oceanic Technol., 11, 586–592
Gorgucci, E., G. Scarchilli, 1997: Intercomparison of multiparameter radar algorithms for estimating rainfall rate. Preprints, 28th Conf. on Radar Meteorology, Austin,
TX, Amer. Meteor. Soc., 55–56.
Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. N. Bringi, 2000: Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci., 57, 3406–3413
Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. N. Bringi. 2001: Rainfall estimation from polarimetric radar measurements: Composite algorithms immune to variability in raindrop shape–size relation. J. Atmos. Oceanic Technol., 18, 1773–1786.
Gorgucci, E., E., V. Chandrasekar, V.N. Bringi, and G. Scarchilli, 2002: Estimation of Raindrop Size Distribution Parameters from Polarimetric Radar Measurements. J. Atmos. Sci., 59, 2373–2384.
Hitschfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteorol., 11, 58-67.
Hogan, R. J., 2007: A variational scheme for retrieving rainfall rate and hail reflectivity fraction from polarization radar, J. Appl. Meteorol. Climatology, 46,
1544-1564.
Hubbert, J., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos.
Oceanic Technol., 12, 643–648.
Hubbert, J., V.N. Bringi, L.D. Carey, and S. Bolen, 1998: CSU-CHILL Polarimetric Radar Measurements from a Severe Hail Storm in Eastern Colorado. J. Appl. Meteor., 37, 749–775.
Illingworth, A.J. and I.J. Caylor, 1991: Correlation measurements of precipitation, Preprints 25th
Int Conf Radar Meteor, American Meteor Soc, Paris, France,
650-653.
Jameson, A., 1983: Microphysical Interpretation of Multi-Parameter Radar Measurements in Rain. Part I: Interpretation of Polarization Measurements and
Estimation of Raindrop Shapes. J. Atmos. Sci., 40, 1792–1802.
Jorgensen, D. P., and P. T. Willis, 1982: A Z-R relationship for hurricanes. J. Appl. Meteor., 21, 356–366.
Joss, J., and A. Waldvogel, 1967: Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung. Pure Appl. Geophys., 68, 240–246.
Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables. Mon. Wea. Rev., 136, 2228–2245.
Jung, Y., M. Xue, G. Zhang, and J.M. Straka, 2008b: Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part II: Impact of Polarimetric Data on Storm Analysis. Mon. Wea. Rev., 136, 2246–2260.
Kennedy, P.C., S.A. Rutledge, W.A. Petersen, and V.N. Bringi, 2001: Polarimetric Radar Observations of Hail Formation. J. Appl. Meteor., 40, 1347–1366. Pfeifer, M.,
G.C. Craig, M. Hagen, and C. Keil, 2008: A Polarimetric Radar Forward Operator for Model Evaluation. J. Appl. Meteor. Climatol., 47, 3202–3220.
Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J.
Atmos. Oceanic Technol., 8, 59-271
Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602–617.
Laws, J. O., and D. A. Parsons, 1943: The relation of raindropsize to intensity. Trans. Amer. Geophys. Union, 24, 452–460.
Liou, Y.C., T.C. Chen Wang, and K.S. Chung, 2003: A Three-Dimensional Variational Approach for Deriving the Thermodynamic Structure Using Doppler Wind Observations—An Application to a Subtropical Squall Line. J. Appl. Meteor.,
42, 1443–1454.
Liou, Y.C., and Y.J. Chang, 2009: A Variational Multiple–Doppler Radar Three-Dimensional Wind Synthesis Method and Its Impacts on Thermodynamic Retrieval. Mon. Wea. Rev., 137, 3992–4010.
Marshall, J. S., and W. M. Palmer, 1948: The distributions of raindrops with size. J. Meteor., 9, 327–332.
Marshall, J. S., R. C. Langille, and W. M. Palmer, 1947: Measurement of rainfall by radar. J. Meteor., 4, 186–192.
Matrosov, S.Y., K.A. Clark, B.E. Martner, and A. Tokay, 2002: X-Band Polarimetric Radar Measurements of Rainfall. J. Appl. Meteor., 41, 941–952.
May, P. T. and T. D. Keenan, 2005: Evaluation of microphysical retrievals from polarimetric radar with wind profiler data, J. Appl. Meteor., 44, 827-838.
Park, S.G., V.N. Bringi, V. Chandrasekar, M. Maki, and K. Iwanami, 2005a: Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation
at X Band. Part I: Theoretical and Empirical Basis. J. Atmos. Oceanic Technol., 22, 1621–1632.
Park, S.G., M. Maki, K. Iwanami, V.N. Bringi, and V. Chandrasekar, 2005b: Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation
at X Band. Part II: Evaluation and Application. J. Atmos. Oceanic Technol., 22, 1633–1655.
Pfeifer, M., G.C. Craig, M. Hagen, and C. Keil, 2008: A Polarimetric Radar Forward Operator for Model Evaluation. J. Appl. Meteor. Climatol., 47, 3202–3220.
Pruppacher, H. R., and K. V. Beard, 1970: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J.
Roy. Meteor. Soc., 96, 247– 256.
Rodgers, C. D., 2000: Inverse methods for atmospheric soundings: Theory and practice. World Scientific, 238 pp.
Ryzhkov, A. V., and D. S. Zrnic′, 1995: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12, 249–256.
Sachidananda, M. and D.S. Zrnic, 1985: ZDR measurement considerations for a fast scan capability radar, Radio Sci, vol. 20, 907-922.
Sachidananda, M., and D. S. Zrnic′, 1987: Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol., 4, 588–598.
Schönhuber, M., H. E. Urban, P. P. V. Poiares Baptista, W. L. Randeu, and W. Riedler, 1997: Weather radar versus 2D-video-disdrometer data. Weather Radar Technology for Water Resources Management, B. Bragg Jr. and O. Massambani,
Eds., Unesco Press, 159–171.
Schönhuber, M., H. E. Urban, W. L. Randeu and J. P. V. Poiares Baptista, 2000: Field Measurements of Raindrop Orientation Angles, ESA SP-444 Proceedings, "Millennium Conference on Antennas & Propagation", April 9-14, 2000, Davos, Switzerland Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of drop size distributions in a thunderstorm. J. Atmos. Sci., 28, 983–994.
Seliga, T. A., and V. N. Bringi, 1976: Potential use of the radar reflectivity at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 69–76.
Smith, P.L. and D.V. Kliche, 2005: The Bias in Moment Estimators for Parameters of Drop Size Distribution Functions: Sampling from Exponential Distributions. J. Appl. Meteor., 44, 1195–1205.
Smyth, T. J., and A. J. Illingworth, 1998: Correction for attenuation of radar reflectivity using polarization data. Quart J. Roy. Meteorol. Soc., 124(551A), 2393-2415.
Steiner, M., and R. A. Houze, 1997: Sensitivity of the estimated monthly convective rain fraction to the choice of Z-R relation. J. Appl. Meteoro., 36, 452-462.
Steiner, M., and J. A. Smith, 2000: Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. J. Appl. Meteoro., 39, 1923-1940.
Steiner, M., J. A. Smith, and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity-rain rate relationships. J. Atmos. Sci., 61, 1114–1131.
Tessendorf, S.A., L.J. Miller, K.C. Wiens, and S.A. Rutledge, 2005: The 29 June 2000 Supercell Observed during STEPS. Part I: Kinematics and Microphysics. J. Atmos. Sci., 62, 4127–4150.
Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The Rain Profiling Algorithm Applied to Polarimetric Weather Radar. J. Atmos. Oceanic Technol., 17, 332–356.
Testud, J., S. Oury, P. Amayenc, and R. A. Black, 2001: The concept of ‘‘normalized’’ distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 1118–1140.
Tokay A., and K. V. Beard, 1996: A Field Study of Raindrop oscillations. Part I: Observation of Size Spectra and Evaluation of Oscillation Causes. J. Appl. Meteor., 35, 1671-1687.
Tokay A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355-371.
Tokay A., P. G. Bashor., E. Habib and T. Kasparis 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136, 1669-1685
Thurai, M., and V. N. Bringi, 2005: Drop axis ratios from 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966–978.
Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764–1775.
Ulbrich, C. W., and D. Atlas, 1984: Assessment of the contribution of differential polarization to improved rainfall measurements. Radio Sci., 19, 49-57
Ulbrich, C. W., and D. Atlas, 2007: Microphysics of rain drop size spectra: tropical continental and maritime storms. J Clim Appl Meteorol., 46, 1777–1791
Vivekanandan, J., W.M. Adams and V.N. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30, 1053-1063.
Vivekanandan, J., S.M. Ellis, R. Oye, D.S. Zrnic, A.V. Ryzhkov, and J. Straka, 1999: Cloud Microphysics Retrieval Using S-band Dual-Polarization Radar Measurements. Bull. Amer. Meteor. Soc., 80, 381–388.
Vivekanandan, J., G. Zhang, S. M. Ellis, D. Rajopadhyaya, and S. K. Avery, 2003: Radar reflectivity calibration using differential propagation phase measurement. Radio Sci., 38, 8049, doi: 10.1029/2002RS002676.
Vivekanandan, J., G. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on aconstrained gamma drop size distribution model. J. Appl. Meteor., 43, 217-230.
Wakimoto, R.M. and V.N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project, Mon. Wea. Rev., vol. 116, 1521-1539.
Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 1648– 1661.
Wilson, J. W., and D. M. Pollock, 1974: Rainfall measurements during Hurricane Agnes by three overlapping radars. J. Appl. Meteor., 13, 835–844.
Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans.
Geosci. Remote Sens., 39, 830–841.
Zhang, G., J. Vivekanandan, and E. Brandes, Robert Meneghini and Toshiaki Kozu. 2003: The shape–slope relation in observed gamma raindrop size distribution:
Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 1106–1119.
Zhang, G., J. Sun, and E.A. Brandes, 2006: Improving Parameterization of Rain Microphysics with Disdrometer and Radar Observations. J. Atmos. Sci., 63, 1273–1290.
指導教授 陳台琦(Tai-Chi Chen Wang) 審核日期 2010-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明