博碩士論文 976201017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.144.28.24
姓名 唐玉霜(Yu-shuang Tang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 2009 莫拉克颱風雷達觀測中尺度雨帶特性研究
(The mesoscale characteristics of rainband from radar analyses: typhoon Morakot(2009).)
相關論文
★ 賀伯颱風與地形間的交互作用★ SCSMEX期間利用C-Pol偏極化雷達氣象參數觀測降水系統之分析
★ 利用與滴譜儀分析雨滴粒徑分布:納莉颱風個案★ 利用都卜勒雷達分析颱風風場結構 - 2001年納莉颱風
★ 宜蘭地區豪雨個案之研究★ 利用二維雨滴譜儀研究雨滴譜特性
★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構★ 利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究
★ 納莉颱風登陸時的結構演化★ 雙偏極化雷達資料分析梅雨鋒面雨滴粒徑分佈的物理特性
★ 台灣北部初秋豪雨個案之降雨特性研究★ 雨滴粒徑分布模擬─雙偏極化雷達驗證
★ 梅雨降水系統的雙偏極化雷達資料分析與WRF模式模擬研究★ 2007年梅雨季期間之颮線個案分析
★ MM5模式模擬之納莉颱風(2001)登陸時風場結構變化★ SoWMEX/TiMREX個案中雨滴粒徑分佈之收支分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 莫拉克颱風侵襲期間,在8月8日下半天有一條長生命期、東西走向對流雨帶,在台灣西南部南北推移,並且有數個強對流胞不斷在雨帶中生成、快速向陸地移動。本研究利用馬公和七股兩個雷達進行雙都卜勒合成風場分析,建構出雨帶內風場的三維結構,分析時間為1754-1831LST。合成風場顯示,颱風環流的西北風和西南氣流在台灣海峽造成輻合和上升運動,進而形成強對流雨帶。
  在本研究中定義「熱塔」為在10公里高度等高面上,其回波大於25dBZ的對流胞,並比較1809LST和1831LST兩個不同時期熱塔的特徵。1809LST的熱塔特徵與典型雨帶內對流胞的垂直概念結構一致,其雷達回波略為向颱風中心外側傾斜,25dBZ的回波垂直高度可達15公里,最大上升氣流強度接近20m/s。在對流雨帶中的對流胞發展和移動,常會伴隨強風速(>30m/s)和正渦度,經由計算渦度收支,發現熱塔內的強上升運動,會增強對流內的正渦度,進一步增強噴流強度。對流胞的強上升運動增強雨帶的中低層噴流強度,會加速對流胞往陸地輸送,但此噴流受到台灣地形的阻擋,加強山區的上升運動,不但造成很強的降水,還使得總降雨量在山區累積,形成重大災害。
  而從馬公雷達偏極化參數得到的雲物理垂直結構可知,對流內的強上升氣流,可將過冷水帶至較高的位置,在中高層有冰水混相,並且在熱塔最高層產生大量冰晶,表示在中高層以上有冰過程的產生,例如澱積、淞化等現象。比較莫拉克颱風(2009)和辛樂克颱風(2008)熱塔個案後,發現前者的對流發展高度較深,強度也較強,且對流胞內蘊含非常大量的水滴。在熱塔中大量的潛熱釋放,透過雲動力的機制,對於維持熱塔生命期和噴流有很大的幫助。
摘要(英) On August 8, 2009, a few strong west-east oriented rain bands associated with Typhoon Morakot formed in southwestern Taiwan. Many deep convection cells were embedded in these rain bands and moved toward the island very quickly. We carried out dual-doppler analysis of Chigu and Magung to retrieve 3-D wind field from 0954 to 1031UTC. The 3-D synthesis wind field revealed that the typhoon northwest wind circulation in Taiwan Strait encountered the southwestern flow to cause a strong convergence zone and form the rain band. The three dimensional reflectivity and flow structures are similar to the conceptual model of hurricane rain band. A low level jet (>30m/s) 10-30km wide, length >100km associated with this rain band.
  The hot tower embedded in the rain band is defined by a threshold of reflectivity (dBZ >25) at 10 km height, and compare the features of the hot towers in different stage (1809LST and 1831UTC). The reflectivity pattern was slightly tilting southward and the reflectivity contour of 25dBZ reached 15km. The updraft of the hot tower was near 20m/s. When the cell moved along the rain band, the cell usually accompanied with the meso-γ-scale jet streak (>40m/s, 2-3km width, 5-20km length) and the positive vertical vorticity. Through the vorticity budget, we found the updraft play an important role to enhance the vertical vorticity and the strong jet streak. Along the jet many deep convection cells (hot towers) were moving quickly. Because the jet was blocked by the mountains in southern Taiwan, the sloping updrafts were enhanced to induce heavy rainfall. The prolonged stay of this devastating rain band caused the high accumulation of rain.
We analyzed the distributions of the polarimetric parameters from Magong radar to reveal microphysical structure in the hot tower. The results show that many little supercool drops were carried by the strong updraft into the tower. The low ZDR and KDP indicated the ice particles in the upper level of tower. The lower ρHV proved the mixed phase near 7-9 km height. After compared the hot towers between typhoon Morakot (2009) and typhoon Sinlaku (2008), the former not only had deeper and stronger convection, but also had larger number of raindrops. The huge amount latent heat was released in whole tower, and through cloud dynamic mechanism, it was helpful for maintaining lifetime of hot tower and low level jet.
關鍵字(中) ★ 偏極化雷達
★ 熱塔
★ 莫拉克颱風
關鍵字(英) ★ polarimeteric radar
★ hot tower
★ typhoon Morakot(2009)
論文目次 中文摘要……………………………………………………………… i
英文摘要……………………………………………………………… ii
誌謝……………………………………………………………………iii
目錄 ……………………………………………………………… iv
圖表說明……………………………………………………………… vi
第一章 緒論
1.1:研究動機……………………………………………………… 1
1.2:文獻回顧……………………………………………………… 1
1.3:研究目的……………………………………………………… 4
第二章 資料來源與處理
2.1:資料來源……………………………………………………… 5
2.1.1:七股都卜勒雷達……………………………………………5
2.1.2:馬公雙偏極化雷達…………………………………………5
2.2:風場合成……………………………………………………… 7
2.3:馬公雙偏極化雷達資料處理流程…………………………… 9
2.3.1:以七股雷達為調校基準估計ZH系統偏移…………..… 8
2.3.2:ZDR系統偏移………………………………………….… 9
2.3.3:ZDR衰減修正………………………………………….… 9
2.3.4:利用ZDR、KDP求得ZH系統偏移…………………………10
第三章 莫拉克颱風降水型態特徵
3.1:綜觀環境…………………………………………………… 12
3.2:颱風雨帶時空分布…………………………………………… 12
3.3:莫拉克雨帶形式特徵………………………………………… 13
3.4:致災雨帶特性………………………………………………… 14
3.5:雨帶三維風場分析…………………………………………… 16
第四章 對流胞特徵
4.1:三維風場特性………………………………………………… 18
4.1.1:熱塔回波三維結構與垂直運動關係………………………19
4.1.2:強風帶與渦度的關係………………………………………20
4.1.3:強垂直運動所扮演的角色…………………………………21
4.1.3.1:對流垂直結構分析…………………………….…21
4.1.3.2:渦度收支…………………………………….……22
4.2:微物理結構…………………………………………………… 24
4.2.2:偏極化參數分布特徵………………………………………24
4.2.3:與辛樂克颱風(2008)對流胞個案的比較………………….25
第五章 結論與未來展望
5.1:結論…………………………………………………...………28
5.2:未來展望……………………………………………...………30
參考文獻…………………………………………………………… 31
附表………………………………………………………………… 33
附圖……………………………………………………………………34
參考文獻 紀博庭,2005:利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究。國立中央大學大氣物理碩士論文,70頁。
洪榮川,2010:薔蜜颱風雨滴粒徑特性及雙偏極化雷達參數垂直結構特徵研究。國防大學理工學院環境資訊及工程學系大氣科學碩士論文,108頁。
陳台琦,魏志憲,林沛練,廖宇慶,唐玉霜,張偉裕,周鑑本,紀博庭,林忠義, 2010:莫拉克颱風雷達觀測中尺度雨帶特徵。莫拉克颱風科學報告,53-81。
鳳雷,2002:熱帶降水系統之雙偏振雷達觀測研究。台灣大學大氣科學博士論
文,161頁。
Anthes, R.A., 2003: Hot Towers and Hurricanes: Early Observations, Theories, and Models. Meteor. Monogr., 29, 139.
Barnes, G. M., D. P. Jorgensen, and F. D. Marks Jr., 1983 : Mesoscale andconvective scale structure of a hurricane rainband. J. Atmos.Sci., 40,2125-2137
Bringi , V. N., V.Chandrasekar, N. Balakrishnan, and D.S. Zrnic, 1990: An
Examination of propagation effects in rainfall on radar measurements at
microwave frequencies. J. Atmos. Oceanic Technol., 7, 829-840.
——, T. Keenan, and V. Chandrasekar, 2001: Correcting C-Band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 1906–1915.
Eastin, M. D. and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of hurricane Ivan (2004). Mon. Wea. Rev., 137, 2081-2104.
Gall, R., Tuttle, J., Hildebrand, and P., 1998: Small-scale spiral bands observated in Hurricanes Andrew, Hugo, and Erin, Mon. Wea. Rev., 126, 1749-1766.
Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: A procedure to calibrate
multiparameter weather radar using properties of the rain medium, IEEE Trans.
Geosci. Remote Sens., 37, 269–276.
Hence, D. A. and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005), J. Geophys. Res., 113, D15108, doi:10.1029/2007JD009429.
Houze, R. A., Jr., M. Bell , and W.-C. Lee, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 2778–2800.
Jorgensen, D. P., E. J. Zipser, and M. A. Lemone, 1985: Vertical motion in intense hurricanes. J. Atmos. Sci., 42, 839-856.
Kumjian, M. R. and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from
polarimetric radar measurements. J. Atmos. Sci., 66, 667–685.
May, T. P. and T. D. Keenan, 2005: Evaluation of microphysical retrievals from polarimetric radar with wind profiler data. J. Appl. Meteor., 44, 827–838.
——, J. D. Kepert, and T. D. Keenan, 2008: Polarimetric radar observations of the persistently asymmetric structure of tropical cyclone Ingrid. Mon. Wea.
Rev., 136, 616-630.
Ray, P. S., K. K. Wagner, K. W. Johnson, J. J. Stephens, W. C. Bumgarner, and E. A. Mueller, 1978: Triple-doppler observations of a convection storm. J. Appl. Meteor., 17, 1201-1212.
——, C. L. Ziegler and W. Bumgarner, 1980: Single- and multiple-doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 1607-1625.
Riehl, H. and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica,6, 503–538.
Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A Dual- Polarization-Radar-Based Assessment of the 8 May 2003 Oklahoma City Area Tornadic Supercell. Mon. Wea. Rev., 136, 2849–2870.s
Smyth T.J. and A.J. Illingworth, 1998: Correction for attenuation of radar reflectivity
using polarization data. Q. J. R. Meteorol. Soc., 124, 2393-2415.
Steranka, J., E. B. Rodgers, and R. C. Gentry, 1986: The relationship between satellite measured convection burst and tropical cyclone intensification. Mon. Wea. Rev.,114, 1539–1546.
Wang, J.-J., 2004: Evolution and structure of the mesoscale convection and its environment: A case study during the early onset of the southeast Asian summer monsoon. Mon. Wea. Rev., 132, 1104–1120.
——, J.-J. and L. D. Carey, 2005: The development and structure of an oceanic
squall-line system during the south china sea monsoon experiment. Mon. Wea. Rev., 133, 1544–1561.
Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183-191.
指導教授 陳台琦(Tai-Chi Chen Wang) 審核日期 2010-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明