博碩士論文 966205011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.138.69.45
姓名 王韻圓(Yun-Yuan Wang)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 西北太平洋長期波候變遷之研究
(A Study on wave climate variation in Tropical North Western Pacific)
相關論文
★ 近岸海洋波浪對海面粗糙度之影響★ 濁水溪河口懸浮沉積物輸送之調查研究
★ 低掠角微波雷達海面背向散射強度受波浪影響程度之探討★ 澎湖海域潮流之數值模擬及其發電潛能評估
★ 台灣沿海表面風之週期特性★ 微波雷達與CCD影像分析於潮間帶地形測量之應用
★ The directional spreading of surface wave in the shallow water zone★ Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan
★ 平緩海灘表層含水量變化特性研究★ Development of S-band and Coherent-on-Receive Marine Radar for Ocean Surface Wave and Current Measurement
★ 內陸棚及河口混合與擴散特性觀測研究★ 臺灣海峽海洋塑料垃圾的輸運
★ 有限項目的連續水質監測 應用於探討觀新藻礁區水體環境即時變化★ 海岸帶地區海表拖曳係數與海表粗糙度(均方傾度)之相依關係
★ 應用微波雷達監測海流之演算法流程改善★ 微型資料浮標觀測波浪及MSS的比對分析與演算流程的改善
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對台灣周邊及西北太平洋海域波候的變異性進行探討,應用SWAN波浪模式,以NCEP提供之全球歷史海表面風速分析場推算1948~2008年近60年西北太平洋之波浪,其所重建的波浪資料與中央氣象局、經濟部水利署及美國大氣海洋總署之國家資料浮標中心設置的海氣象資料浮標觀測資料進行比對和驗證,用於探討長期波候變遷之趨勢。
本研究將波候變遷趨勢分成兩部份討論,第一部份探討台灣周邊海域波高、波能、波浪尖銳度與波向等波浪特性之長期變異震盪與趨勢,了解不同時間尺度下台灣波候之震盪特性及其變異趨勢;第二部份為波高極端事件與統計特性分析。
第一部分研究結果發現台灣波候變異存在三種不同時間尺度之震盪,分別為季節性震盪、受到聖嬰與反聖嬰現象影響的數年震盪、以及十年際週期的震盪。季節震盪方面,冬季波能與夏季波能之比值約在3~3.6倍,其中東岸比值比西岸高;在年際震盪方面,聖嬰與反聖嬰現象對於年際波能震盪具有強烈影響因素,反聖嬰年時,波高與波能變大,冬季的大波會晚到,約在1月發生;聖嬰年時,波高與波能變弱,大波提早於11月發生。此外,台灣海域波能震盪與南方震盪指數(Southern Oscillation Index, SOI)沒有存在相位延遲,但西北太平洋海域則存在一年的相位延遲。十年際震盪方面,將十年際之波候震盪與太平洋年代際震盪(Pacific Decadal Oscillation, PDO)進行相關分析,發現十年際的震盪與具有中度相關。整體趨勢方面,台灣周邊海域之波高有下降的趨勢,平均每年下降0.3公分。整體而言,冬季波高與波能有逐漸下降的趨勢,平均每年波高下降0.8公分,每年波能平均下降0.2千瓦/公尺,此現象與西伯利亞高壓的東北季風強度減弱有關。值得注意的是,夏季有逐漸上升的趨勢,平均每年波高上升0.5公尺,每年波能上升0.1千瓦/公尺,可能與西北太平洋颱風強度增加有關。
第二部分研究探討台灣週邊海域各種大波極端事件發生機率,結果發現近60年來極端事件集中發生於1967至1974年以及2000至2008年間,其中後者所發生的極端事件波高大、延時長。進一步發現,台灣週邊海域所發生的極端大波事件中,冬季的極端大波事件有減少趨勢,夏季的極端大波事件有增加的趨勢,其中夏季發生之大波極端事件完全由颱風所造成,若以1985年為界,之後颱風所造成極端事件的比例,較東北季風為高,且逐年增加。
另一方面,波浪極端值之統計分佈在聖嬰年與反聖嬰年也有極大差異,反聖嬰年之波高極端值約為聖嬰年的2倍,反聖嬰年之波能極端值約為聖嬰年的5倍,此結果可提供海岸工程設計的參考。
摘要(英) We investigated the variation of wave climate around Taiwan Waters and over the Tropical Northwestern Pacific. The global sea surface wind fields from NCEP reanalysis data were used to drive SWAN wave model to re-construct the historical records of wave from 1948 to 2008. The reconstruct wave data was compared and verified with observation from the Central Weather Bureau (CWB) , Water Resources Agency (WRA) and the NDBC/NOAA.
The discussion of the trend of long-term wave climate change was categorized into two parts. In order to clarify the oscillations and trend of wave climate in different time scale, the first part was focused on the oscillations of wave heights, wave energy, wave steepness, and wave direction in the Taiwan Waters. The second part is the analysis of extreme wave events and its statistical characteristics.
The results of the first part showed that the oscillations consisted of three different time-scale oscillations in Taiwan wave climate variations. There were seasonal oscillation, interannual oscillation affected by ENSO, and interdecadal oscillation. In the seasonal oscillation, the wave energy in winter was about 3~3.6 times than in summer. The ratio in east coast was higher than in west coast. The influence of ENSO was significant in interannual oscillation of wave energy. Wave height and wave energy became large in La Niña years. The time of the occurrences winter extreme wave events in La Niña years was several weeks late, which was in January. Wave height and wave energy weakened in El Niño years. The occurrence of winter extreme wave events in El Niño years was in November. In addition, there was no phase lag between wave climate oscillation in the seaaround Taiwan and Southern Oscillation Index (SOI). But there existed one year phase lag in the Northwest Pacific. The interdecadal oscillation of wave climate correlated medially with Pacific Decadal Oscillation (PDO). A decrease trend of wave height was in the sea area nearby Taiwan, which reduced 0.3 cm per year. In winter, the decrease trend of wave height and wave energy was due to decreasing the intensity of Siberia Heighs and associated winter monsoon. It is noted that increase trend is obvious in summer which might indicate the increasing strength of typhoon in this region.
The occurrence probability analysis of extreme wave events in the sea area nearby Taiwan was discussed in the second part. In recent 60 years, most extreme wave events happened in two periods: 1967-1974 and 2000-2008. The larger wave height and longer duration of extreme wave events occurred in the latter than in the former. The extreme wave events in summer (winter) had the increase (decrease) trend in the sea area nearby Taiwan. All the extreme wave events in summer were caused by typhoon. After 1985, the number of extreme wave event caused by typhoon was more than caused by winter monsoon. The difference increased year by year. But the total number of extreme wave event in one year did not have any significant change.
In addition, the statistical distribution of wave extreme value had large difference between El Niño years and La Niña years. The wave height extreme value in La Niña years was about double in El Niño years. The wave energy extreme value was about five times. This result can be provided for the design of coastal engineering.
關鍵字(中) ★ 長期波候變遷
★ 年際震盪
★ 大波極端事件
關鍵字(英) ★ extreme wave events
★ wave climate variation
★ annual oscillation
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VII
圖目錄 IIX
表目錄 XVIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 世界各海域波候變遷前人研究彙整 2
1.3.1 大西洋波候變遷 2
1.3.2太平洋波候變遷 6
1.4 本文組織 14
第二章 研究方法 15
2.1 波浪數值模式理論 15
2.1.1 波浪成長演變機制 15
2.1.2 SWAN波浪模式理論 19
2.1.3 SWAN波浪模式數值方法 23
2.2 經驗模態分解法(EMPIRICAL MODE DECOMPOSITION, EMD) 24
2.2.1 本質模態函數(Intrinsic Mode Function, IMF) 25
2.2.2 經驗模態分解法 26
2.2.3 EMD處理 30
第三章 歷史資料重建及驗證 32
3.1 歷史資料重建 32
3.1.1 風場來源 32
3.1.2 模式計算域設定 36
3.2 波浪模式驗證資料來源 38
3.3 模式計算結果與實測資料之比較 40
3.3.1 龍洞測站波浪驗證 40
3.3.2 花蓮測站波浪驗證 42
3.3.3 西北太平洋海域測站波浪驗證 44
3.3.4 模式誤差與觀測成功率之關係 46
3.4 波能與波浪尖銳度計算 48
第四章 台灣周邊海域波候於時空上的變異 50
4.1 波候季節性變異 54
4.2 波候年際變異 63
4.2.1 台灣周遭海域波候年際變異 63
4.2.2 聖嬰、反聖嬰現象 63
4.2.3 年際波候震盪與SOI指數關係 67
4.2.4 冬夏季波候與ENSO之關係 77
4.3 十年際週期之波候變遷 84
4.3.1 西北太平洋波候之變遷 84
4.4 1948~2008年波候趨勢變遷 87
第五章 台灣周邊海域大波極端事件統計分析 92
5.1 極端值事件分析 92
5.1.1 極端值事件次數分析 92
5.1.2 東北季風 107
5.1.2.1 東北季風成因及特性 107
5.1.2.2 東北季風的變遷 108
5.1.3 西北太平洋極端事件分析 109
5.1.4 颱風的氣候變化趨勢 117
5.2 在聖嬰年與反聖嬰年之極端值統計分佈 119
第六章 結論與建議 127
6.1 結論 127
6.1.1 台灣周邊及西北太平洋波候變遷趨勢 127
6.1.2 台灣周邊海域大波極端事件統計分析結果 128
參考文獻 130
參考文獻 [1] 李怡婷,(2005),「風浪模式計算最佳化之研究」,國立成功大學水利及海洋工程研究所碩士論文。
[2] 高國棟、陸渝蓉,(1994),「氣候學」,明文書局。
[3] 徐泊樺、顏志偉,(2007),「淺談我國海洋能源之開發前景」,物理雙月刊,29(3),720-735。
[4] 許泰文,(2003),「近岸水動力學」,台北;科技圖書。
[5] 陳冠融,(2007),「以經驗模態分解法消除二維影像之雷射光斑之可行性分析」,國立中山大學光電工程研究所碩士論文。
[6] 陳家銘,(2007),「應用波浪數值模式推算台灣海域波浪特性」,國立中山大學海洋環境及工程研究所碩士論文。
[7] 黃玉華,(2005),「聖嬰現象對台灣附近海域海氣象影響之研究」,國立中山大學海洋資源研究所碩士論文。
[8] 楊承道,(2008),「氣候變遷對西北太平洋熱帶氣旋的影響」,國立中央大學大氣物理研究所碩士論文。
[9] 葉均喬,(2005),「風場時空變化對全球大氣-海洋二氧化碳通量計算影響之研究」,國立中央大學水文與海洋科學研究所碩士論文。
[10] 廖建明,(2001),「近岸風浪推算之研究」,國立成功大學水利及海洋工程研究所博士論文。
[11] 鄭皓元,(2005),「SWAN波浪模式推算週期之探討」,國立成功大學水利及海洋工程研究所碩士論文。
[12] 鄭凱傑,(2002),「東亞冬季季風與ENSO事件關係之研究」,國立中央大學大氣物理研究所碩士論文。
[13] Allan, J. C., and P. D. Komar (2000): Are ocean wave heights increasing in the eastern North Pacific? Eos Trans. AGU, 47, 561-567.
[14] Allan, J. C., and P. D. Komar (2001): Wave climate change and coastal erosion in the US Pacific Northwest. Proceedings: WAVES2001 conference held September 2-6, 2001 in San Francisco. American Society of Civil Engineer.
[15] Alves, J. H. G. M., and M. L. Banner (2003): Performance of a saturated-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. J. Phys. Oceanogr., 33, 1274–1298.
[16] Bacon, S. and D. J. T. Carter (1991): Wave climate changes in the North Atlantic and North Sea. Int. J. Climatol., 11, 545-558.
[17] Booij, N., L. H. Holthuijsen, and R. C. Ris (1996): The SWAN wave model for shallow water. Proc. 25th Int. Conf. Coastal Engng., Orlando, USA, 1, 668-676.
[18] Booij, N., R. C. Ris, and L. H. Holthuijsen (1999): A third-generation wave model for coastal regions 1. Model description and validation, J. Geophys. Res., 104, 7649-7666.
[19] Bjerknes, J. (1969): Atmospheric teleconnections from the equatorialPacific. Mon. Wea. Rev., 97, 163–172.
[20] Chen, W., H.-F. Graf,, and R.-H. Huang(2000): The interannual variability of East Asian winter monsoon and its relation to the summer monsoon, Adv.Atmos. Sci., 17(1), 48– 60.
[21] Emanuel, K.A. (2001): The contribution of tropical cyclones to the oceans’meridional heat transport. J. Geophys. Res., 106, 14771-14781.
[22] Emanuel, K. A. (2005): Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688.
[23] Glantz, M. H. (2001): Current of Change: impacts of El Niño and La Niña on climate and society. 2nd ed. Cambridge University Press, Cambridge, UK, 252 pp.
[24] Goda, Y. (2000): Random seas and design of maritime structures. 2nd ed., World Scientific, Singapore, pp. 443.
[25] Gong D. Y. and C. H. Ho (2002):The Siberian high and climate change over middle to high latitude Asia. Theor.Appli. Climatol 72, 1-9.
[26] Graham, N.E. and H.F. Diaz (2001): Evidence for intensification of north Pacific winter cyclones since 1948, Bull Am Met-Soc, 82, 1869-1893.
[27] Gulev, S.K. and V. Grigorieva ( 2006): Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the Voluntary Observing Ship data. Int. J. Climatol., 19, 5667-5685.
[28] Harrison, G. P., and A. R. Wallace (2005): Sensitivity of wave energy to climate change. IEEE Trans Energy Convers, 20, 870-877.
[29] Hasselmann K. (1963):On the nonlinear energy transfer in a gravity –wave spectrum. Part 3: Computation of the energy flux and swell-sea interaction for a Neumann spectrum, J. Fluid Mech., 6, 107-127.
[30] Hasselmann K. (1974): On the spectral dissipation of ocean waves due to whitecapping. Bound. Layer Meteor., 15, 385-398.
[31] Hasselmann K. and Coauthors (1973): Measurements of wind-wave growthand swell decay during the Joint North Sea Wave Project. Dtsh. Hydrogr. Z., 8(Suppl. A), 1–95.
[32] Helmholtz, H. V. (1888): Uber atomspharische bewegungen. S. Bar. Preuss. Akad. Wiss., Berlin, Mathem-Physik, kl.
[33] Huang, N. E., and Coauthors (1998): The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. Roy. Soc. London, 454A, 903–995.
[34] Huang, N. E., and Z. Wu (2008): A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.
[35] Jeffreys, H. (1924): On the formation of waves by wind. Proc. Roy. Soc., A107, 189-206.
[36] Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen (1994): Dynamics and modeling of ocean waves. Cambridge University Press, 554 pp.
[37] Kossin, J.P, K. R. Knapp, D. J. Vimont, and R. J. Murnane (2007): A globally consistent reanalysis of hurricane trends. Geophys. Res. Lett. 34, L04815, doi:10.1029/2006GL028836.
[38] Kushnir, Y., V. J. Cardone, J. G. Greenwood, and M. A. Cane (1997): The recent increase in North Atlantic wave heights. J. Climate, 10, 2107-2113.
[39] McPhaden, M. J. (1999): Genesis and evolution of the 1997-1998 El Niño. Science, 283, 950-954.
[40] McPhaden, M. J., and J. Picaut (1990): El Niño-Southern oscillationdisplacements of the western equatorial Pacific warm pool. Science, 250, 1385-1388.
[41] Miles, J. W. (1957): On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185-204.
[42] U.S. Department of the Interior (2006): Technology white paper on wave energy potential on the U.S. outer continental shelf. Minerals Management Service, Renewable Energy and Alternate Use Program, U.S. Department of the Interior (2006).
[43] Phillips, O. M. (1957): On the generation of waves by turbulent wind. J. Fluid Mech., 2, 417-445.
[44] Rasmusson, E. M., and T. H. Carpenter (1982): Variations in tropical sea surface temperature and surface wind fields associated withthe Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384.
[45] Sasaki, W., S. I. Iwasaki, T. Matsuura, S. Iizuka, and I. Watabe (2005): Changes in wave climate off Hiratsuka, Japan, as affected by storm activity over the western North Pacific. J. Geophys. Res., 110.
[46] Sasaki, W., and T. Hibiya (2007): Interannual variability and predictability of summertime significant wave heights in the western North Pacific. J. Oceanogr., 63, 203-213.
[47] Snyder, R., F. W. Dobson, J. A. Elliott, and R. B. Long (1981): Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, 1-59.
[48] Sterl, A., G. J. Komen, and P. D. Cotton (1998): Fifteen years of global wavehindcasts using winds from the European Centre for Medium-Range Weather Forecast reanalysis: Validating the reanalyzed winds and assessing the wave climate. J. Geophys. Res., 103, 5477–5492.
[49] Wang, B., R.G. Wu, and X.H. Fu (2000): Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J. Climate, 13, 1517-1536.
[50] Wang, X. L., and V. R. Swail (2001): Changes of extreme wave height in Northern Hemisphere Ocean and related atmospheric circulation regimes. J. Climate., 14, 2204-2221.
[51] Wang, X. L., and V. R. Swail (2002): Trends of Atlantic wave extremes as simulated in a 40-yr wave hindcast using kinematically reanalyzed wind fields. J. Climate., 15, 1020-1035.
[52] WASA Group (1998): The WASA project: Changing storm and wave climate in the North Atlantic and adjacent seas? Fourth Int. Workshop on Wave Hindcasting and Forecasting, Banff, AB, Canada, Panel on Energy Research and Development, 31-34.
[53] Webster, P. J., G. J. Holland, J. A. Curry and H.-R. Chang (2005): Changes in tropical cyclone number, duration and intensity in a warming environment. Science, 309, 1844-1846.
[54] Weisse, R., and H.Günther (2007): Wave climate and long-term changes for the Southern North Sea obtained from a high-resolution hindcast 1958-2002. Ocean Dyn., 57, 161-172.
[55] Woolf, D. K., P. G. Challenor, and P. D. Cotton (2002): Variability and predictability of the North Atlantic wave climate, J. Geophys. Res., 107,doi:10.1029/2001JC001124.
[56] Wu, Z., and N. E. Huang (2005), Ensemble empirical mode decomposition: A noise-assisted data analysis method, COLA Tech. Rep. 193, Cent. for Ocean-Land-Atmos. Stud., Calverton, Md.
[57] Wu, L., B. Wang, and S. Geng (2005): Growing typhoon influence on east Asia, Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.
[58] Wyrtki, K. (1975): El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572-584.
[59] Yamaguchi, M. and Y. Hatada (2003): Estimation of wave climate and its long-term variability around the coasts of Korea, Proc. 13th ISOPE conference, Hawaii.
[60] Young, I.R. (1999): Wind Generated Ocean Waves. Oxford-Elsevier, Amsterdam.
[61] Zhang, Y., K.R. Sperber, and J.S. Boyle(1997): Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979-95 NCEP/NCAR reanalysis, Mon. Weather Rev.,125, 2605-2619.
指導教授 錢樺(Hwa Chien) 審核日期 2010-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明